Overview

- Introduce the notion of curvature, to provide better connections between theory and practice.
- Study the role of curvature in:
 - Approximating submodular functions everywhere
 - Learning Submodular functions
 - Constrained Minimization of submodular functions.
- Provide improved curvature-dependent worst case approximation guarantees and matching hardness results.

Curvature of a Submodular function

- Define three variants of curvature of a monotone submodular function as:
 - \(\kappa_f = 1 - \min_{j \in S} \frac{f(j) - f(j \cup S)}{f(j)} \)
 - \(\kappa(S) = 1 - \min_{j \in S} \frac{f(j \cup S) - f(j)}{f(j)} \)
 - \(\kappa(S) = 1 - \frac{\sum_{j \in S} f(j \cup S) - f(j)}{\sum_{j \in S} f(j)} \)

- Proposition: \(\kappa(S) \leq \kappa_f \leq \kappa(S) \)
- Captures the linearity of a submodular function.
- A more gradual characterization of the hardness of various problems.
- Investigated for submodular maximization (Conforti & Cornuejols, 1984).

Main Ideas

- Curve-Normalized form: Given a monotone submodular function, the curve-normalized version of \(f \) is:
 \[f^*(X) = \frac{f(X) - (1 - \kappa_f) \sum_{j \in X} f(j)}{\kappa_f} \]

- Idea: Decompose \(f \) as \(f(X) = f_{\text{omni}}(X) + f_{\text{easy}}(X) \) where \(f_{\text{omni}}(X) = \kappa_f f^*(X) \) and \(f_{\text{easy}}(X) = (1 - \kappa_f) \sum_{j \in X} f(j) \).

- Lemma: If \(f \) is monotone submodular, then \(f^*(X) \) is also monotone non-negative submodular function. Furthermore, \(f^*(X) \leq \sum_{j \in X} f(j) \).

- Lower bounds: Also show curvature-dependent lower bounds.

Approximating Submodular functions Everywhere

Problem: Given a submodular function \(f \) in form of a value oracle, find an approximation \(\hat{f} \) (within polynomial time and space), such that:
\[f(X) \leq \hat{f}(X) \leq \alpha(n) f(X), \forall X \subseteq V \] for a polynomial \(\alpha(n) \).

We provide a black-box technique to transform bounds into curvature dependent ones.

- Main technique: Approximate the curve-normalized version \(f^* \) as \(\hat{f} \), such that:
\[\hat{f}(X) \leq f^*(X) \leq \alpha(n) f^*(X) \]

Theorem: The function \(\hat{f}(X) \) satisfies:
\[\hat{f}(X) \leq \frac{\alpha(n)}{1 + (\alpha(n) - 1)(1 - \kappa_f)} f(X) \leq \frac{1}{1 - \kappa_f} f(X) \]

Ellipsoidal Approximation:
- The Ellipsoidal Approximation algorithm of Goemans et al, provides a function of the form \(\sqrt{w(X)} \) with an approximation factor of \(\alpha(n) = O(\sqrt{\log n}) \).

- Corollary: There exists a function of the form, \(\hat{f}^{\text{ellip}}(X) = \kappa_f \sqrt{w(X)} + (1 - \kappa_f) \sum_{j \in X} f(j) \) such that:
\[\hat{f}^{\text{ellip}}(X) \leq f(X) \leq O\left(\sqrt{\log n} + (1 + \sqrt{\log n}) (1 - \kappa_f)\right) \]

- Lower bound: Given a submodular function \(f \) with curvature \(\kappa_f \), there does not exist any polynomial-time algorithm that approximates \(f \) within a factor of \(\frac{1}{1 - \kappa_f} \), for any \(\kappa_f > 0 \).

- Modular Upper Bound:
 - A simplest approximation (and upper bound) is \(\hat{f}_M(X) = \sum_{j \in X} f(j) \).
 - Lemma: Given a monotone submodular function \(f \), it holds that:
\[f(X) \leq \hat{f}_M(X) = \sum_{j \in X} f(j) \leq \frac{|X|}{1 + (|X| - 1)(1 - \kappa_f)} f(X) \]

 This bound is tight for the class of modular approximations.

- Corollary: The class of functions, \(f(X) = \sum_{j \in X} \lambda_j |w(X)|^\alpha \), \(\lambda_j \geq 0 \), satisfies:
\[f(X) \leq \sum_{j \in X} f(j) \leq |X|^{-\alpha} f(X) \]

Constrained Submodular Minimization

Problem: Minimize a submodular function \(f \) over a family \(\mathcal{C} \) of feasible sets, i.e., \(\min_{X \in \mathcal{C}} f(X) \). \(\mathcal{C} \) could be constraints of the form cardinality (knapsack) constraints, cuts, paths, matchings, trees etc.

- Main framework is to choose a surrogate function \(\hat{f} \), and optimize it instead of \(f \).

- Ellipsoidal Approximation based (EA): Use the curve based Ellipsoidal Approximation as the surrogate function.

- Lemma: For a submodular function with curvature \(\kappa_f < 1 \), algorithm EA will return a solution \(\hat{X} \) that satisfies:
\[f(\hat{X}) \leq O\left(\frac{\sqrt{\log n}}{(\sqrt{\log n} - 1)(1 - \kappa_f)}\right) f(X) \]

- Modular Upper bound based:
 - Use the simple modular upper bound as a surrogate.
 - Lemma: Let \(X \in \mathcal{C} \) be the solution for minimizing \(\sum_{j \in X} f(j) \) over \(\mathcal{C} \). Then:
\[f(X) \leq \frac{|X|}{1 + (|X| - 1)(1 - \kappa_f)} f(X) \]

- Corollary: The class of functions, \(f(X) = \sum_{j \in X} \lambda_j |w(X)|^\alpha \), \(\lambda_j \geq 0 \), can be minimized up to a factor of \(|X|^{-\alpha} \).

Constrained Submodular Minimization

Table: Summary of our results for constrained minimization.

<table>
<thead>
<tr>
<th>Constraint</th>
<th>MUB</th>
<th>EA</th>
<th>Curve+Ind.</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Card. LB</td>
<td>(O(n^{1.5}))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>(O(n^{1.5}))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Matchings</td>
<td>(O(n^{1.5}))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>s-t path</td>
<td>(O(n^{1.5}))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>s-t cut</td>
<td>(O(n^{1.5}))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
<td>(O(n \log n))</td>
</tr>
</tbody>
</table>

Effect of Curvature: Polynomial change in the bounds!

- Experiments:
 - Define a function \(f_{\text{ellip}}(X) = n \min\{\kappa(X) R + \beta |X|, \alpha\} \}
 - Choose \(\alpha = n^{1/2} \) and \(\beta = n^2 \), and \(\kappa = \frac{|X|}{|X| - 1} \geq 1 \).

Acknowledgements

Based upon work supported by National Science Foundation Grant No. IIS-1162606, and by a Google, a Microsoft, and an Intel research award. This was also funded in part by Office of Naval Research under grant no. N00014-11-1-0688, NSF CISE Expeditions award CCF-1139158, DARPA XData Award FA8750-12-2-0331, and gifts from Amazon Web Services, Google, SAP, Blue Goji, Cisco, Cleardown Data, Cloudera, Ericsson, Facebook, General Electric, Hortonworks, Intel, Microsoft, NetApp, Oracle, Samsung, Splunk, VMware and Yahoo!