Involve solving the Problem 1 with submodular function f:

$$\max_{|S|<t} f(S).$$

Challenges in Big Data:
- Greedy algorithm is centralized and sequential.
- Even lazy greedy algorithm (LAZYGREED) does not scale well.

Contributions:
- Introduce a multi-stage framework (MULTIGREED) to speed up LAZYGREED in 3 ways:
 1. reduce the number of function evaluations (APPROXGREED),
 2. reduce the ground set size (Pruning),
 3. decrease the complexity of function evaluations (Surrogate functions),
- Complementary to existing distributed algorithms.
- Generalizable to submodular knapsack problem and submodular set cover problem.

Multi-stage Algorithmic Framework

Approximate Greedy (APPROXGREED($f, \ell, \beta_{i=1}^{\ell}$)):

- Not finding the item that attains the maximum gain in each iteration.
- Only looking for an item whose gain is at least $\beta_i \leq 1$ of maximum gain.

Lemma

Pruning: Let $\{u_i\}_{i=1}^{\ell}$ be such that $f(u_i|V \setminus u_i) \geq \cdots \geq f(u_0|V \setminus u_0)$, then LAZYGREED on the reduced set $V = \{j \in V|f(j) \geq f(u_i|V \setminus u_i)\}$ is equivalent to that applied on the ground set V.

MULTIGREED may optionally start with the pruning step.
- Can be implemented in parallel.

Algorithm 1 Multi-stage Framework (MULTIGREED)

1. Input: a submodular function f, cardinality constraint t, number of stages ℓ, proxy functions $(f_j)_{j=1}^{\ell}$, size constraints $(\beta_j)_{j=1}^{\ell}$, and $(\beta_{i=1}^{\ell})$.
2. Initialize $C' = \emptyset$, $L = 0$; 3. for $j = 1$ to ℓ do
 4. Define $F_j(S) \equiv f_j(S|C)$ for all $S \subseteq V$
5. $S \in$ APPROXGREED($f_j, \beta_j, (\beta_{i=1}^{\ell})$)
6. $L = L + \ell$, $C' = C' + S$
end for
8. Output C

Theoretical Analysis

Greedy ratio: Harmonic mean of the individual greedy ratios $\{a_i\}_{i=1}^{\ell}$.

$$\alpha = \frac{\ell}{\sum_{i=1}^{\ell} \frac{1}{a_i}}$$

where individual greedy ratio is defined as:

$$a_i = \max_{S \subseteq V} f(S|S_i, S_{\ell}) \in [1, +\infty]$$

- a_i: ratio of greedy gain to the gain of S_i (chosen by MULTIGREED).

Curvature:

$$\kappa_{\ell}(S) = 1 - \min_{V \setminus V} \frac{\nu \ell}{f(S \setminus S_{\ell})} \in [0, 1]$$

Theorem

An instance of MULTIGREED with greedy ratio α is guaranteed to obtain a set S s.t.

$$\frac{f(S)}{f(S_{OPT})} \geq \frac{1}{\alpha} - \left(1 - \frac{1}{\alpha}\right)^{\beta_{j=1}^{\ell}} \geq \frac{1}{\alpha} - (1 - \epsilon^2) \geq (1 - \epsilon)$$

Conversely, for any $\alpha > \kappa_{\ell}$, there exists an f with curvature κ_{ℓ}, on which instance of MULTIGREED with greedy ratio α achieves an approximation factor $\frac{1}{\alpha} - (1 - \epsilon^2)$.

Corollary: APPROXGREED($f, \ell, (\beta_{i=1}^{\ell})$) is guaranteed to achieve a factor of $(1 - \epsilon)$, where $\epsilon = 1/\sum_{i=1}^{\ell} \beta_i$.

Greedy ratio also work in other scenarios such as submodular knapsack and submodular set cover problems.

Goal: design MULTIGREED such that its greedy ratio is close to 1.

Surrogate Functions

Uniform Submodular Mixtures:

$$f(S) = \frac{1}{|T|} \sum_{f \in T} f(S)$$

where $|T| \geq 1$, and f is monotone submodular $\forall f \in T$.

Lemma

Using f_{sub} as a surrogate, it holds that $1 - \delta$, where $\delta = (1 - 5\epsilon) \frac{\ell}{\ell + 1}$.

Modular Surrogate:

$$f_{\text{mod}}(S) = \sum_{f \in T} f(S)$$

where $T' \subseteq T$ is generated by sampling from T with probability p.

Lemma

Using f_{mod} as a surrogate, it holds that $1 - \alpha_i$, where $\alpha_i = \frac{1}{\ell + 1}$.

Graph-based Functions: Defined via an underlying weighted complete graph.

k-NNG Surrogate: $f_{\text{k-NNG}}$ defined on a k-NNG for a graph-based function f.

Experiments

Simulations:
- Vary k, p, and ℓ for $f_{\text{fac}}, f_{\text{sat}}$, and f_{rea} respectively.

Speech Data Subset Selection:
- A real-world and large-scale ($n = 1, 322, 018$) problem.
- Solve Problem 1 with f_{fac}.
- Run MULTIGREED ($\ell = 1$) with f_{fac}.
- Yield ≥ 1000 times speedup over LAZYGREED.

Table:

<table>
<thead>
<tr>
<th>Facility Function</th>
<th>Random</th>
<th>Histogram</th>
<th>Entropy</th>
<th>Multi-stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{fac}</td>
<td>38.2</td>
<td>35.1</td>
<td>34.4</td>
<td>37.3</td>
</tr>
<tr>
<td>f_{sat}</td>
<td>37.6</td>
<td>34.2</td>
<td>31.0</td>
<td>34.1</td>
</tr>
<tr>
<td>f_{rea}</td>
<td>32.7</td>
<td>34.1</td>
<td>32.7</td>
<td>37.3</td>
</tr>
</tbody>
</table>

| Averaged Random | 38.2 | 35.1 | 34.4 | 37.3 |
| 5% 10% 20% 50% 80%| 38.2 | 35.1 | 34.4 | 37.3 |

Acknowledgements: This work was partially supported by IRAP under agreement number FA8650-12-2-7263, the NSF under Grant No. IIS-1162606, and by a Google, a Microsoft, and an Intel research award.