
PAC-learning bounded tree-width Graphical Models

Mukund Narasimhan

Dept. of Electrical Engineering
University of Washington

Seattle, WA 98195

Jeff Bilmes

Dept. of Electrical Engineering
University of Washington

Seattle, WA 98195

Abstract

We show that the class of strongly
connected graphical models with tree-
width at most k can be properly effi-
ciently PAC-learnt with respect to the
Kullback-Leibler Divergence. Previous
approaches to this problem, such as
those of Chow ([1]), and Hoffgen ([7])
have shown that this class is PAC-
learnable by reducing it to a combi-
natorial optimization problem. How-
ever, for k > 1, this problem is NP-
complete ([15]), and so unless P=NP,
these approaches will take exponential
amounts of time. Our approach dif-
fers significantly from these, in that it
first attempts to find approximate condi-
tional independencies by solving (poly-
nomially many) submodular optimiza-
tion problems, and then using a dy-
namic programming formulation to com-
bine the approximate conditional inde-
pendence information to derive a graph-
ical model with underlying graph of the
tree-width specified. This gives us an ef-
ficient (polynomial time in the number
of random variables) PAC-learning al-
gorithm which requires only polynomial
number of samples of the true distribu-
tion, and only polynomial running time.

1 Introduction and Previous work

Let (P,G) be a graphical model, where G is a
graph, and P is a probability distribution over

random variables corresponding to the vertices of
G. If only the probabilty distribution P is speci-
fied, then in general, there is no unique graph G
over which P factorizes. In fact, all probability
distributions factorize over the complete graph.
The goal therefore, is to find a graph G with as
few edges as possible over which the given distri-
bution factorizes. As this problem is NP-complete
([11]), we look at the following variant of this
problem. Given a class of graphs G, where it is
known that the distribution P factorizes over at
least one graph G ∈ G, find a graph in G over
which P factorizes. The complexity of this prob-
lem depends on the class G, and much research
has been directed at finding classes G which can
be learnt in polynomial time. There is a plethora
of negative results ([8, 11, 14, 16]) showing that
learning various classes of graphs, including paths
and polytrees, is NP-complete. So far the only
positive result in this area (to the best of our
knowledge) are the results of ([1, 7]) in which it
is shown that the class of trees can be properly
efficiently learnt. While trees are an important
class of distributions, they can only represent very
sparse dependencies. There is much interest in
learning other model families in which richer de-
pendence structures are possible.

Prior attempts at learning the model family rely
on reducing the problem to a combinatorial op-
timization problem. When the combinatorial op-
timization problem is easy (such as finding min-
imum/maximum spanning tree), then the learn-
ing problem becomes easy. The reverse reduc-
tion (reducing an arbitrary instance of a NP-
complete problem to a learning problem) is used
to demonstrate hardness of learning problem. We

use a different approach, and show the learnabil-
ity of a subclass of bounded tree-width networks
by first discovering the conditional independen-
cies in the model by solving a polynomial num-
ber of submodular optimization problems. Each
one of these problems can be solved in polynomial
time using an algorithm developed by Queyranne
([10]). We then use a dynamic programming al-
gorithm to patch these dependencies together to
create a graph of the tree-width specified. While
we restrict ourselves to showing the learnability of
(partial) k-trees, this approach could conceivably
be used for other subclasses of graphical models
as well.

2 Preliminaries and Notation

A graph G = (V,E) is said to be chordal if ev-
ery cycle of length at least 4 has a chord. A
tree-decomposition([6]) of a graph G = (V,E) is a
pair (T = (I, F), {Vi}i∈I), where T is a tree, and
V (G) = ∪i∈IVi such that if uv is an edge in E(G),
then there is a i ∈ I such that u, v ∈ Vi, and if
i, j, k ∈ I are such that j is on the path from i to k
in T , then Vi∩Vk ⊆ Vj . The tree-width of this tree-
decomposition is maxi∈I |Vi| − 1. A partial k-tree
is a chordal graph which has a tree-decomposition
with width k. For any edge e = {i, j} ∈ F , we let
Ve = Vij = Vi ∩ Vj . Note that Ve is a separator
in G for every e ∈ F , and in fact, these are the
unique minimal separators of G.

Let P be a probability distribution over ran-
dom variables {Xv}v∈V . For any A ⊆ V , we
let PA be the (marginalized) probability distri-
bution of the random vector (Xa)a∈A. We say
that the probability distribution factorizes ac-
cording to the chordal graph G = (V,E) if for
every minimal separator S ⊆ V which sepa-
rates the graph into components A and B, the
marginal distributions PA∪S and PB∪S factorize
with respect to G[A ∪ S] and G[B ∪ S] respec-
tively. Let us denote by HP (A) the binary en-
tropy H({Xv}v∈A) with respect to the probabil-
ity distribution P , and by IP (A;B|S) the mu-
tual information I({Xv}v∈A ; {Xv}v∈B | {Xv}v∈S)
with respect to P . If P factorizes over G, and
S is a minimal separator of G such that G[V \
S] has connected components {C1, C2, . . . , Cm},

then IP (V (Ci);V (Cj)|S) = 0 for all i 6= j. S is
called an α-strong separator if we cannot parti-
tion the vertices in Ci into Ci = Ci1 ∪Ci2 satisfy-
ing IP (Ci1;Ci2|S) ≤ α. We say that the graphi-
cal model (P,G) is α-strongly connected if every
minimal separator S of the chordal graph G is an
α-strong separator. We say that (P,G) is strongly
connected if there is some α > 0 such that every
minimal separator is an α-strong separator.

A class of distributions T is properly efficiently
learnable (with respect to the KL-divergence cri-
teria) if there exists a probabilistic algorithm
which for every P ∈ T , and for every ε, δ > 0,
finds a P̃ ∈ T such that D(P‖P̃) < ε with proba-
bility at least 1−δ in time polynomial in n, 1

ε
and

1
δ
. The algorithm may sample from the (true) dis-

tribution P , but at most a polynomial number of
times. We will assume the existence of an algo-
rithm that can estimate the entropies of an arbi-
trary subset of the random variables with preci-
sion ε and confidence 1−δ using f(n, ε, δ) samples,
where f(n, ε, δ) is polynomial in n, 1

ε
and 1

δ
. The

exact algorithm might depend on the nature of
the distribution (i.e., depending on whether the
random variables are discrete, continuous, Gaus-
sian etc.). An application of Hoeffding’s inequal-
ity shows that this is possible for discrete distribu-
tions (alternatively see [7]). It is also possible to
do this for continuous/mixed distributions by dis-
cretizing, though much more efficient algorithms
exist for distributions such as Gaussians. It is
clear that if each query can be computed in poly-
nomial time, with at most polynomial number of
samples, then any algorithm which issues at most
a polynomial number of such queries, and runs
in polynomial time other than these queries is in
fact a polynomial time algorithm.

3 Submodularity and Partitions

A set function f : 2V → R+ is called sub-
modular if for any A,B ⊆ V , f(A) + f(B) ≥
f(A ∪ B) + f(A ∩ B). f is said to be symmet-
ric if f(A) = f(V \ A). Submodular functions
may be thought of as the discrete analog of con-
vex functions, and have several similar proper-
ties. For example, there are polynomial time al-
gorithms to minimize submodular functions (see

[3]). Our interest in submodular functions stems
from the fact that the mutual information func-
tion is a submodular function.

Lemma 1. Let P be any probability distribution,
and S ⊆ V be a fixed set. Then HP (·|S) : 2V → R

is a submodular function.

Proof. 0 ≤ IP (A;B|S) = HP (A|S) +HP (B|S) −
HP (A ∪B|S)−HP (A ∩B|S).

Proposition 2. Let P be an arbitrary distri-
bution on the random variables {Xv}v∈V . Let
F : 2V → R+ be given by F (A) = IP (A;V \ A).
Then F is symmetric and submodular.

Proof. We can write F (A) = HP (A) + HP (V \
A) − HP (V). Therefore, F (A) + F (B) =
[HP (A) +HP (B)] + [HP (V \A) +HP (V \B)] −
2HP (V). By the submodularity of HP (·),
HP (A) + HP (B) ≥ HP (A ∩ B) + HP (A ∪ B).
Similarly, HP (V \ A) + HP (V \ B) ≥ HP (V \
(A ∪B)) +HP (V \ (A ∩B)). The result now fol-
lows by noting that F (A ∩ B) = HP (A ∩ B) +
HP (V \ (A ∩ B)) − HP (V) and F (A ∪ B) =
HP (A∪B)+HP (V \(A∪B))−HP (V). Therefore
F (·) is submodular and symmetric.

We will be investigating conditional independence
relationships between random variables. If a set of
random variables {Xa}a∈A is conditionally inde-
pendent of the set of random variables {Xb}b∈B,
given the set {Xs}s∈S according to the probabil-
ity distribution P , then IP (A;B|S) = 0. Note
that in this definition, we have not required that
A and B be disjoint (or A ∩ B = φ). However
since IP (A ∪ S;B ∪ S|S) = IP (A;B|S) it will be
convenient for our application to let A ∩ B = S.
Let VS = V \ S. The following corollary is imme-
diate.

Corollary 3. For any probability distribution P ,
the function FP,S : 2V

S → R+, given by FP,S(A) =
IP (A;VS \A|S), is symmetric and submodular.

One reason for the importance of submodular
functions is the existence of efficient algorithms
to minimize submodular set functions (see [2]).
If f : 2V → R+ is both symmetric and sub-
modular, then there exist combinatorial algo-
rithms to compute this minimum. For exam-
ple, Queyranne’s Algorithm, described in [10],

will return a proper subset A ⊆ V such that
A ∈ arg minB∈2V \{V,φ} f(B). Let us denote this
algorithm by QA. QA takes as input a f -value ora-
cle, and runs in timeO(

∣∣VS

∣∣3), using at most
∣∣VS

∣∣3
oracle calls. In particular, since FP,S : 2V

S → R+

is symmetric and submodular, we can (quickly)
find a set A such that FP,S(A) is minimized. If
S ⊆ V , then we say that S is a ε-separator of
V if there is a partition A ∪ B of VS such that
IP (A;B|S) ≤ ε. In this case, we call {A,B} an
ε-partition for (VS , S, P). Clearly, we can use QA,
and a FP,S-value oracle, to determine if there are
any ε-partitions for (VS , S, P).

When we are trying to estimate or learn a
probability distribution P by sampling, we do
not have a FP,S-value oracle. However, sam-
pling will let us estimate FP,S . So, suppose

that we had a F̃P,S-value oracle, which satisfies∣∣∣F̃P,S(A)− FP,S(A)
∣∣∣ ≤ ε1 for every A ⊆ VS . One

problem is that F̃P,S(A) need not be submodular,
and hence QA need not return the minimum value
of F̃P,S(A). However, we do have the following re-
sult.

Lemma 4. Suppose that FP,S : 2V
S →

R+ is a symmetric submodular function, and
F̃P,S : 2V

S → R+ is another function
that is not necessarily submodular, but satisfies∣∣∣F̃P,S(A)− FP,S(A)

∣∣∣ ≤ ε1 for every A ⊆ VS .

Then QA will return a non-empty proper subset
Ã ⊂ VS such that for every non-empty proper sub-

set A ⊂ VS, F̃P,S(Ã)−F̃P,S(A) ≤
∣∣VS

∣∣·ε1 ≤ |V |·ε1

The proof of this lemma can be found in the ap-
pendix. So, Ã is an approximate minimizer for
F̃P,S(·). In fact it is also an approximate mini-
mizer for FP,S(·).

Corollary 5. Suppose that A minimizes FP,S(·),
and Ã is the set returned by QA. Then FP,S(Ã)−
FP,S(A) ≤ (|V |+ 2)ε1.

Proof.

0 ≤ FP,S(Ã)− FP,S(A)

≤ (F̃P,S(Ã) + ε1)− (F̃P,S(A)− ε1)

= 2ε1 + F̃P,S(Ã)− F̃P,S(A)

≤ 2ε1 + |V | · ε1

= (|V |+ 2) ε1

Therefore, if we run QA using the F̃Q,S-value or-
acle, we will get a set Ã that is (|V | + 2)ε1-close
to optimal for FP,S . In particular, for all proper
subsets B ⊆ VS , FP,S(B) ≥ FP,S(Ã) − (|V | +
2)ε1. A sufficient condition for this to hold is∣∣∣FP,S(A)− F̃P,S(A)

∣∣∣ ≤ ε1 for every query issued

by the run of QA. If each oracle query F̃P,S(A)
can be computed in polynomial time, and us-
ing only polynomially many samples, with pre-
cision ε1 and confidence at least 1 − δ1, then∣∣∣F̃P,S(A)− FP,S(A)

∣∣∣ ≤ ε1 for all the A’s queried

by the run of QA with confidence at least 1 −∣∣VS

∣∣3 δ1 by the union bound1 We summarize this
discussion in the proposition below

Proposition 6. Suppose that F̃P,S repre-
sents an approximation to FP,S which satisfies∣∣∣F̃P,S(A)− FP,S(A)

∣∣∣ ≤ ε1 with confidence at least

1−δ1 for any (particular) A ⊆ VS . Then running

QA with a F̃P,S-value oracle results in a solution
Ã ⊆ VS which is within (|V |+2)ε1 close to optimal

(for FP,S) with confidence at least 1−
∣∣VS

∣∣3 δ1. In

particular, if F̃P,S(Ã) ≥ (|V |+2)ε1+ε2, then there
is no ε2-partition for (VS , S, P) (with confidence

at least 1−
∣∣VS

∣∣3 δ1).

The function FP,S(A) = IP (A;VS \ A|S), repre-
sents the mutual information between the ran-
dom variables indexed by A and the remaining
random variables once S is given. We will call
IP̃ (·|S) or F̃P,S the sample or the approximate
mutual information, corresponding to sample dis-
tribution P̃ . Suppose that A ∪ B = VS . If
IP̃ (A;B|S) ≤ ε, we will say that {A,B} is an

ε-partition for (VS , S, P̃). Now, a graphical model
representing P can be thought of as representing
conditional independencies, and correspondingly,
our goal is to learn these conditional independen-
cies. If A⊥⊥B|S, then IP (A;B|S) = 0. This of
course means that {A,B} is an 0-partition for
(VS , S, P). Hence it is a ε1-partition for (VS , S, P̃)
with high confidence. We should note however,
that the converse is not necessarily true. If {A,B}
is a ε1-partition for (VS , S, P̃), then it need not be
a 0-partition for (VS , S, P). However, it is a (2ε1)-

1If each Ai occurs with confidence 1− pi, then Ai does
not occur with probability pi. Therefore, the probability
that at least one of the Ai does not occur is at most

∑
pi.

Hence all the Ai occur with probability at least 1−
∑

pi.

a

b

e

c

d h

f

g

Figure 1: S = {c, e} , πS = {{g, f} , {a, b, d} , {h}}

partition for (VS , S, P) with high confidence, and
so for sufficiently small ε1, A and B are “almost”
independent given S. In fact, as we will show in a
later section, we can always find almost indepen-
dent partitions so that the total KL divergence
between the resulting distribution, and the origi-
nal distribution remains small.

If G is a graphical model representing the proba-
bility distribution P , and A⊥⊥B|S, then G[V \ S]
is a disconnected graph, and A and B are the
union of components of G[V \ S]. For example,
in the graph in Figure 1, if S = {c, e}, then the
removal of S disconnects the graph into the parts
{a, b, d} and {g, f, h}. Note that {g, f, h} is not
connected in the residual graph, but is the union
of {g, f} and {h}. It helps to consider the compo-
nents themselves, rather than the union of com-
ponents, and so, we extend our notion of almost
conditional independence to partitions of VS of
the form π = {A1, A2, . . . , Am}, where m ≥ 2. π
is a partition of VS and so VS is the disjoint union
∪m

i=1Ai. We call π an ε-partition for (VS , S, P) if
IP (Ai;Aj |S) ≤ ε for all 1 ≤ i 6= j ≤ m.

Lemma 7. If π is a ε2-partition for (VS , S, P̃),
and A ⊆ VS , then ρ = {Ai ∩A : Ai ∈ π} is a ε2-
partition for (A,S, P̃). Further, if A ∈ π, and ρ is
a ε3-partition for (A,S, P̃), then ψ = (π \ {A})∪ρ
is a max(ε2, ε3)-partition for (VS , S, P̃).

Proof. The first remark follows because IP (Ai ∩
A;Aj ∩ A|S) ≤ IP (Ai;Aj |S). If A ∈ π, then it
can be checked that ψ is a partition for VS . Let
ε = max(ε2, ε3). If C,D ∈ ψ, we consider 3 cases.
First, if C,D ∈ π, then IP̃ (C;D|S) ≤ ε2 ≤ ε.
If C,D ∈ ρ, then IP̃ (C;D|S) ≤ ε3 ≤ ε. If nei-
ther of these cases occur, we may assume (by
symmetry) that C ∈ ψ and D ∈ π. Then
IP̃ (C;D|S) ≤ IP̃ (C;A|S) ≤ ε2 ≤ ε. Therefore

ψ is an ε-partition for (VS , S, P̃).

Lemma 7 suggests a possible strategy for finding
the almost independent components, for a given
fixed separator S. Start with the trivial partition
π =

{
VS

}
of VS , and iteratively attempt to parti-

tion the partitions, till the information loss is too
large. This is shown in Algorithm 1. For any

π0
S ←

{
VS

}
; i← 0;

while ∃Xi ∈ πi
S such that {Ai, Bi} is an ε-

partition of (Xi, S, P̃) do

πi+1
S ←

(
πi

S \ {Xi}
)
∪ {Ai, Bi}; i← i+ 1;

end

πS(ε)← πi
S

Algorithm 1: Algorithm to compute ε-partition
πS(ε) (for any given ε and S)

S ⊆ V and maximum allowable information loss
ε > 0, the algorithm shown computes a partition
πS(ε) of VS . We say that a partition ψ is a refine-
ment of π if each element of π can be written as
the union of elements of ψ. Therefore, in Algo-
rithm 1, the partition πi

S refines πj
S for all j ≤ i.

We then have the following result.

Lemma 8. The partition πS(·) produced by the
above algorithm satisfies the following properties
with confidence at least 1−O(|V |5)δ1 :

1. If {A,B} is any ε2-partition of (VS , S, P),
{A,B} is refined by πS(ε2 + (|V |+ 2)ε1).

2. If C,D ∈ πS(ε2 + (|V | + 2)ε1), and C 6= D,
then IP (C;D|S) ≤ ε2 + (|V |+ 3)ε1.

3. If {C,D} is any partition (of VS) that is
refined by πS(ε2 + 2ε1), then IP (C;D|S) ≤
|V |2 (ε2 + (|V |+ 3)ε1) ≤ |V |

3 (ε2 + 3ε1).

Proof. We note that the loop in the algorithm
shown above iterates at most

∣∣VS

∣∣ times. During
each iteration QA is called at most

∣∣VS

∣∣ times,

and hence there are at most
∣∣VS

∣∣5 queries of the

form F̃P,S(A) made by the algorithm shown. So,∣∣∣F̃P,S(A)− FP,S(A)
∣∣∣ ≤ ε1 for all queries F̃P,S(A)

by QA, with confidence at least 1 − (|V |5)δ1 by
the union bound. In particular, if {A,B} is an
ε2-partition of (VS , S, P), then with confidence at

least 1− |V |5 δ1, it has to be a (ε2 + (|V |+ 2)ε1)-
partition of (VS , S, P̃) by Lemma 7. There-
fore, if πS(ε2 + (|V | + 2)ε1) is not a refinement
of {A,B}, then the algorithm should not have
stopped where it did, a contradiction. The sec-
ond assertion follows by induction and Lemma 7.
The final assertion now follows by noting that if
Λ,Γ are disjoint, then IP (∪α∈ΛYα;∪β∈ΓYβ |S) ≤∑

α∈Λ,β∈Γ IP (Yα;Yβ|S) ≤ |V |2 (ε2 + (|V | +
3)ε1).

Let P(ε1, ε2) be the set of partitions
{πS(ε2 + (|V |+ 2)ε1) : S ⊆ V, |S| ≤ k}. There

are at most
(|V |
≤k

)
∈ O(|V |k) sets of size at most

k. Then, we have the following result

Corollary 9. We can generate the set of par-

titions P(ε1, ε2) in time O
(
|V |k+5

)
, making at

most O
(
|V |k+5

)
oracle calls. The set P(ε1, ε2)

satisfies the following with confidence at least(
1− |V |k+5 δ1

)
.

1. If {A,B} is any ε2-partition of (V, S, P), then
πS(ε2+(|V |+2)ε1) ∈ P(ε1, ε2) refines {A,B}.

2. If {A,B} is any partition that πS(ε2 +(|V |+
2)ε1) ∈ P(ε1, ε2) refines, then {A,B} is an
|V |3 (ε2 + 3ε1)-partition.

4 Partitions and Tree-Decompositions

If G = (V,E) is a chordal graph of tree-
width k, then G has a tree-decomposition (T =
(I, F), {Vi}i∈I) of width k. Conversely, given a
tree-decomposition (T = (I, F), {Vi}i∈I) of width
k, we get a chordal graph G = (V,E) of tree-
width k. For any edge ViVj ∈ F , let Vij = Vi∩Vj .
Then it follows from a result in [5] that the min-
imal separators of G are precisely the sets of the
form Vij . Since T is a tree, the removal of any
edge ViVj breaks the graph up into two trees. We
will let V A

ij and V B
ij be the vertices of G corre-

sponding to the two trees except for Vij . If P

factorizes over G, then
{
V A

ij , V
V
ij

}
is a 0-partition

for (VVij
, Vij , P). In fact, we have ([9])

P
(
{Xv}v∈V

)
=

∏
i∈I P

(
{Xv}v∈Vi

)

∏
ViVj∈F P

(
{Xv}v∈Vij

)

If P satisfies the above condition, we say that
P factorizes over the tree-decomposition (T =
(I, F), {Vi}i∈I). So, finding a chordal graph G
of width k such that P (·) factorizes over G is
equivalent to finding a tree-decomposition over
which P (·) factorizes. Now, we can ask a re-
lated question : Given a tree-decomposition (T =
(I, F), {Vi}i∈I), find a probability distribution

P̃ (·) which factorizes over this tree-decomposition
such that D(P‖P̃) is minimized. When P (·) fac-
torizes over T , then P (·) is the unique optimal
solution. More generally, we have the following
result.

Lemma 10. Let P be a probability distribution,
and (T = (I, F), {Vi}i∈I) a tree-decomposition.
Then the unique minimizer of D(P‖P1) subject to
the constraint that P1 factorizes over T is given
by

P1

(
{Xv}v∈V

)
=

∏
i∈I P

(
{Xv}v∈Vi

)

∏
ViVj∈F P

(
{Xv}v∈Vij

)

Further,

D(P‖P1) =
∑

ViVj∈F

IP (V A
ij ;V B

ij |Vij)

Proof. See [17].

For any set S ⊆ V with |S| ≤ k, let πS
4
=

πS(ε2 + (|V | + 2)ε1) ∈ P(ε1, ε2) be the parti-
tion corresponding to S. We say that the tree-
decomposition (T = (I, F), {Vi}i∈I) is compatible

with P(ε1, ε2) if πVij
refines

{
V A

ij , V
B
ij

}
. We then

have the following result.

Lemma 11. Suppose that (T = (I, F), {Vi}i∈I)
is a tree-decomposition that is compatible with
P(ε1, ε2). Let P1 be the optimal distribution as
in Lemma 10. Then D(P‖P1) ≤ |V |

4 (ε2 + 3ε1).

Proof. Let ViVj be any edge in T . Then πVij
re-

fines
{
V A

ij , V
B
ij

}
, and so by Lemma 9, we have

I(V A
ij ;V B

ij |Vij) ≤ |V |
3 (ε2 + 3ε+ 1). Therefore, by

Lemma 10, D(P‖P̃) ≤ (|I| − 1) · |V |3 (ε2 + 3ε1) ≤
|V |4 (ε2 + 3ε1).

Pick α > 0 so that P is α-strongly connected.
Given arbitrary ε, δ > 0, let δ1 = δ

|V |5
, and ε1 =

ε2 <
min(ε,α)

4|V |4
. Then |V |4 (ε2 + 3ε1) < min(ε, α).

In particular, if (T = (I, F), {Vi}i∈I) is any tree-
decomposition for P , then for every separator

Vij ,
{
V A

ij , V
V
ij

}
is refined by πVij

. Hence the

tree-decomposition is compatible with P(ε1, ε2).
Therefore, if there is a tree-decomposition over
which P factorizes, then it is compatible with
P(ε1, ε2). Lemma 11 guarantees that if we re-
strict our search to tree-decompositions that are
compatible with P(ε1, ε2), we are guaranteed to
find a tree-decomposition for which the optimal
probability distribution P1 satisfies D(P‖P1) ≤
|V |4 (ε2 + 3ε1) < ε, since it is known that there is
at least one tree-decomposition compatible with
P(ε1, ε2). The obvious approach to finding such
compatible tree-decompositions using dynamic
programming by examining partitions in order of
increasing size. Let S be the set of all pairs of
the form (S,A) where A ∈ πS ∈ P(ε1, ε2) and
|S| ≤ k. Then A is a element of the partition in-
duced by (the separator) S, and we will define the
size of (S,A) to be |(S,A)| = |S ∪A|. A dynamic
programming algorithm which works by examin-
ing parititons in order of increasing size is shown
as Algorithm 2. This is a simple variant of the
algorithm described in [4].

S ← {(S,A) : |S| ≤ k,A ∈ πS ∈ P(ε1, ε2)};
M← {(S,A) ∈ S : |S ∪A| ≤ k + 1};
for (S,A) ∈ S in order of increasing |S ∪A| do

for v ∈ A ∪ S do

R ←

{
(L,B) ∈M :

L ⊆ S ∪ {v}
B ∪ L ⊆ A ∪ S

}
;

if ∪(L,B)∈R(B ∪ L) = A ∪ S then

M←M∪ {(S,A)};

end

end

if ∃(S, πS) s.t. (S,A) ∈M∀A ∈ πS then

Exit(“Tree-decomposition exists”);

else

Exit(“No Tree-decomposition exits”);

end

end

Algorithm 2: Finding a Tree-Decomposition
compatible with P(ε1, ε2).

Theorem 12. For any ε, δ > 0, pick ε1, ε2 as
above. Then computing P(ε1, ε2) using Algo-

rithm 1, and then running Algorithm 2 will pro-
duce a tree decomposition, and hence a graphical
model (G,P1) such that D(P‖P1) ≤ ε with confi-
dence at least δ as long as P factorizes over some
graph of treewidth at most k.

5 Conclusions

We have shown that by identifying approximate
conditional independencies in a graphical model,
we can identify the potential separators in the
underlying graph. This yields a polynomial
time algorithm to properly efficiently PAC-learn
strongly connected graphical models of bounded
tree-width. Interesting avenues for future re-
search include investigating if this technique can
be used for robust learning of larger classes of
graphical models.

References

[1] C. Chow and C. Liu, “Approximating dis-
crete probability distributions with depen-
dence trees”, IEEE Transactions on Informa-
tion Theory, v. 14, 1968, Pages 462–467

[2] M. Grötschel, L. Lovász and A. Schrijver.
“The ellipsoid method and its consequences
in combinatorial optimization”. In Combina-
torica, v. 1, Pages 169–197, 1981.

[3] L. Lovász. “Submodular functions and con-
vexity”. In Mathematical Programming – The
State of the Art, A. Bachem, M. Grötchel and
B. Korte, eds., Springer-Verlag, Pages 235–
257, 1983.

[4] S. Arnborg, D. G. Corneil and A.
Proskurowski. “Complexity of finding
embeddings in a k-tree”. In SIAM J. Alg.
Disc. Meth., v. 8, No. 2, April 1987

[5] C. W. Ho and R. C. T. Lee. “Counting
clique trees and computing perfect elimina-
tion schemes in parallel”, In Information Pro-
cessing Letters v. 31, Pages 61-68, 1989.

[6] H. L. Bodlaender, “A tourist guide through
treewidth”, In Acta Cybernetica, 1993.

[7] K-U. Höffgen. “Learning and Robust Learn-
ing of Product Distributions.” In COLT ’93.

[8] P. Dagum and M. Luby “Approximating
probabilistic inference in belief networks is
NP-hard”, Artificial Intelligence, v. 60, Pages
141–153, 1993.

[9] S. Lauritzen. “Graphical Models”, Oxford
University Press, Oxford, United Kingdom,
1996.

[10] M. Queyranne. “Minimizing symmetric sub-
modular functions”, in Math. Programming,
82 (1998), Pages 3–12.

[11] D. Chickering, “Learning Bayesian networks
is NP-complete”, in Fisher, D. and Lenz, H.
editors, Learning from Data”, 1996, Pages
121–130, Springer-Verlag

[12] T. A. McKee and F. R. McMorris. “Topics
in Intersection Graph Theory”, SIAM Mono-
graphs on Discrete Mathematics and Appli-
cations, 1999.

[13] A. Brandstädt, V. B. Lee and J. P. Spinrad.
“Graph Classes : A Survey”, SIAM Mono-
graphs on Discrete Mathematics and Appli-
cations, 1999.

[14] S. Dasgupta, “Learning polytrees”, In Pro-
ceedings of the Fifteenth Conference on Un-
certainty in Artificial Intelligence, Pages 134–
141, 1999.

[15] D. Karger and N. Srebro. “Learning Markov
networks: Maximum bounded tree-width
graphs.” In Symposium on Discrete Algo-
rithms, 2001, Pages 391-401.

[16] C. Meek, “Finding a path is harder than find-
ing a tree”, JAIR v. 15, Pages 383–389, 2001.

[17] M. Narasimhan and J. Bilmes, “Effi-
cient proper PAC-learning of bounded tree-
width graphical models”, Technical Report
UWEETR-2004-0009, University of Wash-
ington, 2004.

A Proof of Lemma 4

An ordered pair (t, u) called a pendent pair for
(V, f) if for every U ⊆ V with u ∈ U and t 6∈ U ,
we have f [u] ≤ f [U]. Algorithm 3 is a subroutine

used in Queyranne’s algorithm. When f is sym-
metric and submodular, the subroutine returns a
pendant pair (t, u). We consider the case when f
is approximately symmetric and submodular. By
this we mean that there is an ε > 0 such that
f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B) − ε, and
|f(A)− f(V \A)| ≤ ε for every A,B ⊆ V . We
then have the following result, which is equiva-
lent to Theorem 2 in [10], which is proven using
a variant of their argument.

v1 ← arbitrary x; W1 ← {v1}
for i = 1 : n− 1 do

∀u ∈ V \Wi do key[u]← f [Wi∪u]−f [u];
vi+1 ← arg minu∈V \Wi

key[u]
Wi+1 ←Wi ∪ vi+1

end

return(vn−1, vn)

Algorithm 3: Compute a pendent pair
(t, v) = (vn−1, vn).

Lemma 13. Suppose that f : 2V → R is approx-
imately symmetric and submodular. Then for ev-
ery 1 ≤ i ≤ n−1, for each u 6∈Wi and S ⊆Wi−1,
we have f [Wi]+f [u] ≤ f [Wi\S]+f [X∪u]+(i−1)ε

Proof. We show this by induction. For i = 1,
Wi−1 = φ, and so we only need check that f [Wi]+
f [u] ≤ f [Wi]+f [u], which is clearly true. Suppose
that the result holds for all 1 ≤ i < k. Consider
any S ⊆Wk−1. Let j be the smallest integer such
that S ⊆ Wj−1. If j = k, then vk−1 ∈ S and
Wk−1 \ S ⊆Wk−2. Therefore,

f [Wk \ S] + f [S ∪ u]

(A)
= f [(Wk−1 \ S) ∪ vk] + f [S ∪ u]

(B)

≥ f(Wk−1) + f(vk)− f(S) + f(S ∪ u)− (k − 2)ε

(C)

≥ f(Wk−1 ∪ u) + f(vk)− (k − 1)ε

(D)

≥ f(Wk) + f(u)− (k − 1)ε

Where (A) follows because Wk \ S = (Wk−1 \
S) ∪ vk, (B) follows from the inductive hypoth-
esis using (vk,Wk−1 \ S) and i = k − 1 since
vk 6∈ Wk−1 and Wk−1 \ S ⊆ Wk−2. (C) fol-
lows from approximate submodulartity by taking

A = Wk−1 and B = S ∪ u. Then A ∪ B =
Wk−1 ∪ u and A ∩ B = S. To see (D), note
that at step k, vk ∈ V \ Wk−1 is selected so
that vk = arg minu∈V \Wk−1

(f [Wk−1 ∪ u]− f [u]).
Therefore, for u 6∈ Wk, we have f [Wk−1 ∪ u] −
f [u] ≥ f [Wk−1 ∪ vk]− f [vk] = f [Wk]− f [vk].

If j < k, then vj−1 ∈ S and none of vj , . . . , vk are
in S. We have

f [Wk \ S] + f [S + u]

= f [(Wj−1 \ S) ∪ (Wk \Wj−1)] + f [S ∪ u]

(F)

≥ f [(Wj−1 \ S) ∪ (Wk \Wj−1)]

+f [Wj]− f [Wj \ S] + f [u]− (j − 2)ε

(G)

≥ f [Wk] + f [u]− (j − 1)ε

Since j < k, we may use the inductive hypoth-
esis with (u, S) and i = j to get (F). Then we
use approximate submodularity by letting A =
(Wj−1 \ S) ∪ (Wk \ Wj−1) and B = Wj . Then
A ∪ B = Wk and A ∩ B = Wj \ S. to get (G).
Therefore, the claim holds by induction.

Theorem 14. Suppose that f is approximately
symmetric and submodular. Then the pendent
pair (t, u) returned Algorithm 3 satisfies f [u] ≤
min{U⊆V :u∈U, t6∈U} f [U] + nε

2 .

Proof.

2f [vn]− ε
(H)

≤ f [vn] + f [Wn−1]

(I)

≤ f [Wn−1 \ S] + f [S ∪ vn] + (n− 2)ε

(J)

≤ 2f [S ∪ vn] + (n− 1)ε

where (H) follows from approximate submodular-
ity, (I) follows from Lemma 13 with i = n−1 and
u = vn. (J) now follows by using approximate
submodularity one again.

Now, if f is symmetric and submodular, and f̃

satisfies
∣∣∣f(A)− f̃(A)

∣∣∣ < ε/4, then f̃ is an ap-

proximately symmetric submodular function. An
argument similar to proof of Theorem 3 in [10]
now shows that Queyranne’s algorithm will return
a solution that is nε close to optimal. Therefore,
Lemma 4 follows.

