Submodularity beyond submodular energies: Coupling edges in graph cuts

Stefanie Jegelka and Jeff Bilmes

Max Planck Institute for Intelligent Systems
Tübingen, Germany

University of Washington
Seattle, USA
local pairwise random fields ...
Markov Random Fields and Energies

\[
p(x | z) \propto \exp(-E_\Psi(x; z))
\]

MAP \quad x^* = \arg \min_x E_\Psi(x; z)
Markov Random Fields and Energies

\[p(x \mid z) \propto \exp(-E_{\psi}(x; z)) \]

\[\text{MAP} \quad x^* = \arg \min_x E_{\psi}(x; z) \]

\[E(x; z) = \sum_i \psi_i(x_i) + \sum_{(i,j) \in \mathcal{N}} \psi_{ij}(x_i, x_j) \]
\[p(x \mid z) \propto \exp(-E_\Psi(x; z)) \]

\[\text{MAP } x^* = \arg \min_x E_\Psi(x; z) \]

\[
E(x; z) = \sum_i \Psi_i(x_i) + \sum_{(i,j) \in \mathcal{N}} \Psi_{ij}(x_i, x_j)
\]

\[
E(x; z) = \sum_{e \in \Gamma \times \mathfrak{E}_t} w_e + \sum_{e \in \Gamma \times \mathfrak{E}_n} w_e
\]
Markov Random Fields and Energies

\[p(x | z) \propto \exp(-E_\psi(x; z)) \]

MAP \[x^* = \arg \min_x E_\psi(x; z) \]

\[E(x; z) = \sum_i \psi_i(x_i) + \sum_{(i,j) \in \mathcal{N}} \psi_{ij}(x_i, x_j) \]

\[E(x; z) = \sum_{e \in \Gamma \cap \mathcal{E}_t} w_e + \sum_{e \in \Gamma \cap \mathcal{E}_n} w_e \]
Graph Cuts

Cooperative Cuts

Optimization

Applications
Couple edges globally.
Couple edges globally.
Couple edges globally
Richer Cuts: Cooperative Cuts

\[E(x) = \sum_{e \in \Gamma x} w(e) = w(\Gamma x) \]
Richer Cuts: Cooperative Cuts

\[E(x) = \sum_{e \in \Gamma x} w(e) \]
\[= w(\Gamma x) \]

\[E_f(x) = f(\Gamma x) \]
submodular function on edges
Richer Cuts: Cooperative Cuts

\[E(x) = \sum_{e \in \Gamma x} w(e) = w(\Gamma x) \]

\[E_f(x) = f(\Gamma x) \]

submodular function on edges

non-submodular &
global energy
Coupling via Submodularity
Coupling via Submodularity

\[f(A \cup e) - f(A) \geq f(A \cup B \cup e) - f(A \cup B) \]

- Graph Cuts: LHS = RHS
 “it does not matter which other edges are cut”
Coupling via Submodularity

\[f(A \cup e) - f(A) \geq f(A \cup B \cup e) - f(A \cup B) \]

- Graph Cuts: LHS = RHS
 “it does not matter which other edges are cut”

submodularity:
- reward co-occurrence
- structure
Special cases of cooperative cuts:

- (robust) P^n potentials (Kohli et al. ’07,’09)
- label costs (Delong et al. ’11)
- discrete versions of norm-based cuts (Sinop & Grady ’07)
- ...
Optimization?

Theorem

Minimum Cooperative Cut is NP-hard.
Optimization?

\[(s, t)\text{-cut } \Gamma \subseteq \mathcal{E} \text{ with min cost } f(\Gamma)\].

Theorem

Minimum Cooperative Cut is NP-hard.
\[\Gamma_0 = \emptyset; \]

repeat

compute upper bound \(\hat{f}_i \geq f \) based on \(\Gamma_{i-1} \);

until convergence;

\[\hat{f}_i(\Gamma_{i-1}) = f(\Gamma_{i-1}) \]
\[\Gamma_0 = \emptyset; \]
\begin{algorithmic}
 \State \textbf{repeat}
 \State \hspace{1em} compute upper bound \(\hat{f}_i \geq f \) based on \(\Gamma_{i-1} \);
 \State \hspace{1em} \(\Gamma_i \in \text{argmin} \{ \hat{f}_i(\Gamma) \mid \Gamma \text{ a cut} \} \); \hspace{1em} // \hspace{1em} \text{Min-cut!}
 \State \hspace{1em} \(i = i + 1; \)
 \State \textbf{until} convergence;
\end{algorithmic}

\[\hat{f}_i(\Gamma_{i-1}) = f(\Gamma_{i-1}) \]
\[
\Gamma_0 = \emptyset; \\
\text{repeat} \\
\text{compute upper bound } \hat{f}_i \geq f \text{ based on } \Gamma_{i-1}; \\
\Gamma_i \in \arg\min \{ \hat{f}_i(\Gamma) \mid \Gamma \text{ a cut} \}; \quad \text{// Min-cut!} \\
i = i + 1; \\
\text{until convergence ;}
\]

Worst-case approximation bound:

\[
E_f(x) \leq \frac{|\Gamma^*|}{1+|\Gamma^*|} E_f(x^*) \quad \text{for } \nu = \frac{\min_{e \in \Gamma^*} \rho_e(E \setminus e)}{\max_{e \in C^*} f(e)}
\]
Image Segmentation

Random Walker
Curvature reg.
Graph Cut
Image Segmentation

prefer congruous boundaries
Selective Discount for Congruous Boundaries

\[E_w(x) = \sum_{e \in \Gamma \cap \mathcal{E}_t} w_e + \lambda \sum_{e \in \Gamma \cap \mathcal{E}_n} w_e \]

\[E_f(x) = \sum_{e \in \Gamma \cap \mathcal{E}_t} w_e + \lambda f(\Gamma \cap \mathcal{E}_n) \]
Selective Discount for Congruous Boundaries

\[E_w(x) = \sum_{e \in \Gamma \cap \mathcal{E}_t} w_e + \lambda \sum_{e \in \Gamma \cap \mathcal{E}_n} w_e \]

\[E_f(x) = \sum_{e \in \Gamma \cap \mathcal{E}_t} w_e + \lambda f(\Gamma \cap \mathcal{E}_n) \]

- discount for co-occurring similar edges
- no discount for dissimilar edges
Structured Discounts

groups S_i of edges

$$f(\Gamma) = \sum_i f_i(\Gamma \cap S_i)$$
Structured Discounts

$$f(\Gamma) = \sum_i f_i(\Gamma \cap S_i)$$

groups $$S_i$$ of edges
Structured Discounts

$$f(\Gamma) = \sum_i f_i(\Gamma \cap S_i)$$

groups S_i of edges
Some Results: Shading

Graph Cut
7.39%

CoopCut
2.23%

7.65%
3.50%
Some Results: Shading

<table>
<thead>
<tr>
<th>Method</th>
<th>discount</th>
<th>gray</th>
<th>color</th>
<th>high-freq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graph Cut: no discount</td>
<td></td>
<td>14.03</td>
<td>3.41</td>
<td>2.56</td>
</tr>
<tr>
<td>CoopCut (1 group): discount</td>
<td></td>
<td>11.58</td>
<td>2.95</td>
<td>1.49</td>
</tr>
<tr>
<td>CoopCut (15 groups): structured discount</td>
<td>3.63</td>
<td>1.69</td>
<td>1.27</td>
<td></td>
</tr>
</tbody>
</table>

- Graph Cut: 5.08%
- CoopCut: 0.64%
Shrinking bias

\[
\sum_{i} \psi_i(x_i) + \lambda \sum_{e \in E} \mathcal{W}_e
\]
Shrinking bias

\[
\sum_{i} \psi_i(x_i) + \lambda \sum_{e \in \Gamma X} w_e
\]

Graph Cut
Shrinking bias

\[
\sum \psi_i(x_i) + \lambda f(\Gamma x)
\]

CoopCut

Graph Cut
Shrinking bias

\[\sum_{i} \psi_i(x_i) + \lambda f(\Gamma x) \]

CoopCut

Graph Cut
Summary: Coupling Edges in Graph Cuts

- global, non-submodular family of energies
- NP-hard, but...
 - graph structure
 - indirect submodularity
 → efficient approximation algorithm

- applications
 - guide segmentations via edge coupling