
Notes on graph cuts with submodular edge weights

Stefanie Jegelka
Max Planck Institute for Biological Cybernetics

Tübingen, Germany
jegelka@tuebingen.mpg.de

Jeff Bilmes
University of Washington, Seattle
Dept. of Electrical Engineering

bilmes@uw.edu

Abstract

Generalizing the cost in the standard min-cut problem to a submodular cost function im-
mediately makes the problem harder. Not only do we prove NP hardness even for non-
negative submodular costs, but also show a lower bound of Ω(|V |1/3) on the approx-
imation factor for the (s, t) cut version of the problem. On the positive side, we pro-
pose and compare three approximation algorithms with an overall approximation factor of
O(min{|V |,

√
|E| log |V |}) that appear to do well in practice.

1 Introduction

We consider the problem of partitioning the node set V of an undirected graph G = (V,E) into (X,V \X)
with minimum cost. Let δX be the set of edges betweenX and V \X , so that δX = {(i, j) ∈ E : i ∈ X, j ∈
V \ X}. The cost of a cut is measured by a submodular function f : 2E → R defined on the edges of G.
That is, a cut δX has cost g(X) , f(δX), and the goal is to identify an ∅ ⊂ X ⊂ V that minimizes g(X).
Note that g is not submodular in general. Equivalently, the problem can be viewed as minimizing f under a
G-defined cut constraint, where a cut must bi-partition the graph. We name this problem edge-submodular
graph cuts (ESC) to distinguish it from the standard (edge-modular cost) graph cut problem, which is the
minimization of a submodular function on the nodes (rather than the edges) and solvable in polynomial time.

If f is a modular function (i.e., f(A) =
∑
e∈A f(a), ∀A ⊆ E), then ESC reduces to the standard min-cut

problem. ESC differs from submodular flows (solvable in polynomial time), where submodularity defines
feasible flows but the cost of an edge set is still modular. We show in Section 2 that submodular costs
make the min-cut problem much harder: it becomes NP-hard even if f is nonnegative and normalized (i.e.,
f(∅) = 0). Our reduction illustrates the expressive power of submodular functions. In fact, we show that
edge-submodular (s, t)-cuts are not approximable with a factor better than Ω(n1/3) for n = |V |. In Section 3,
we present preliminary techniques that achieve good results in practice and an O(min{|V |,

√
|E| log |V |})

approximation in theory, thereby portending well for tighter approximation schemes.

An application for ESC, and our key motivation, comes from finding separators in graphical models. Given a
graphical model describing a family of distributions, we often wish to find a separator, i.e., a set of variables
rendering a bi-partition of the remaining variables conditionally independent. We desire either small separa-
tors (measured as number of random variables), or separators with small state-space (the joint alphabet size
of the separator is small). For both measures, a standard min-cut algorithm solves the problem both exactly
and efficiently. In certain cases, however, we need a separator with small entropy. The log state space is a
modular upper bound on the entropy, but an arbitrarily loose one, so directly minimizing the entropy is better.
A low-entropy separator can be encoded with a small number of bits and therefore can be seen as informa-
tion theoretically equivalent to a small number of random variables, although more general. It is useful for
graphical-model inference on distributed computers. Sharing such a separator across machines can minimize
the cross-machine communication when there is no bi-partition with low mutual information. The separator
also helps to find boundaries in dynamic graphical models [1]. Since entropy is submodular in the random
variable set, finding a low-entropy separator is an instance of ESC.

A variety of previous work relates to our problem, such as the standard well-studied (modular) min-cut
problem [2] or the aforementioned submodular flow problem (see references in [2]). In the polymatroidal
maxflow problem (PF) [3], two submodular capacity functions at each node restrict the in- and outflow of that
node, respectively. The inflow (resp. outflow) must lie within the independence polyhedron associated with

1

the corresponding inflow (resp. outflow) capacity. We use the solution to PF for a poly-time approximation
to ESC. A special case of ESC are label cuts, where one pays for sets of edges [4]. In general, there has been
recent interest in replacing modular functions with submodular ones in standard combinatorial problems.
For example, [5] consider submodular load balancing, sparsest cut and balanced cut. Submodular vertex-
cover, spanning trees, shortest paths, and matchings are addressed in [6]. The function approximation in [7]
makes algorithms for linear costs amenable to approximate problems with submodular costs. We utilize ideas
from these papers. Further recent work considers submodular minimization with set cover constraints [8] or
maximization with matroid constraints [9].

2 Hardness

We start off by proving that submodular edge weights render the cut problem NP hard, and the (s, t)-cut ver-
sion inapproximable at better than Ω(n1/3)1. The hardness proof also holds for (s, t)-cuts with nonnegative,
monotone costs. If we relax the monotonicity condition, then the lower bound also holds for ESC by adding
an edge (s, t) as in the proof of NP hardness.

First, note that if f is nonnegative, normalized, and monotone, then g is subadditive on the nodes. This has
no general benefit though: Let R ⊆ V be an arbitrary set of nodes and b > 1 a large number, and define
a (subadditive) function g : 2V → R as g(X) = 1[X = R] + b1[X 6= R and X 6= ∅], where 1[·] is the
indicator function. Without knowing R, minimizing g requires exponentially many evaluations of g. This
hard function is the node-based cost g(X) = f(δX) of ESC with edge costs f(A) = maxe∈A w(e) where
w(e) = 1[e ∈ δR] + b1[e /∈ δR]. Knowing the graph structure (thereby breaking apart g), however, we can
find the optimum in polynomial time by greedily merging node pairs that are connected by heavy edges.

2.1 Edge-submodular cuts are NP hard

It is known that the common min-cut problem with nonnegative, modular edge weights becomes hard if edge
weights can be negative, or if size constraints are added on the partitions [10]. If we allow an arbitrary
submodular function f for the costs, then it is immediately clear that the ESC problem becomes NP hard.
As an example, correlation clustering (CC) corresponds to ESC with a modular f that takes the values ±1
and a complete graph G. CC for a fixed number of partitions is NP hard but does have a PTAS [11]. With
strictly negative modular f , ESC becomes the max-cut problem, also NP hard but with a constant-factor
approximation [2]. By a graph bisection reduction, we prove that even with a nonnegative f , ESC is hard.
Definition 1 (Graph Bisection (GB)). Given an undirected graph G = (V,E) with weights w : E → R+

0 ,
find a partition V1, V2 ⊂ V of the nodes, such that |V1| = |V2| = |V |/2 and

∑
e∈E∩(V1×V2) w(e) is minimal.

GB is NP hard and does not have a PTAS [12]. Let GB = (VB , EB) be an instance of GB with n nodes.
We create an auxiliary graph G and submodular function f whose minimum ESC corresponds to the optimal
bisection of GB . G has two additional nodes s, t and 2n + 1 additional edges. To form G, retain GB with
the costs on EB and connect the additional nodes s and t to every vertex in GB with corresponding new
edge sets Es and Et. Also connect s with t. Thus, G = (VB ∪ {s, t}, EB ∪ Es ∪ Et ∪ {(s, t)}). The
minimum ESC will (i) separate s and t, (ii) separate the nodes in VB into two equal-sized partitions, that is,
cut n/2 edges each of Es and Et, and (iii), have minimum cost with respect to the edges EB . We enforce the
structural constraints (i) and (ii) with barrier submodular functions f1 and f2, respectively, and then add the
cost f3(A) =

∑
e∈A∩EB

w(e). The overall cost is

f(A) = α1f1(A) + α2f2(A) + α3f3(A),

defined on E(G) with αi > 0 to be specified later. First, let f1(A) = 1[(s, t) /∈ A] |A|. This function is
submodular and strongly favors the inclusion of edge (s, t).

Next, an (s, t) separation cuts n edges in Es ∪Et. A balanced cut of VB assigns n/2 nodes to s, cutting their
edges to t, and the other n/2 nodes to t, cutting their edges to s. Hence, the barrier f2 on Es ∪ Et favors,
among all setsA ⊆ E separating s and t, those that fulfill two conditions: |A∩Es| = n/2 = |A∩Et|, and for
each node v ∈ VB , the cut A cuts off either the connection to s or to t. Cutting both connections could lead
to an imbalanced partition. Let As = A ∩ Es, At = A ∩ Et, and As∩t = {(vi, s) ∈ As and (vi, t) ∈ At}.
The desired function is

f2(A) = (|As|+ |At|)D(n)− (|As||At| − |As∩t|)D′(n− 1), (1)

where D(n) and D′(n − 1) are suitable constants depending on n. If D(n) is the number of derangements
of n elements, and D′(n) is the number of “derangements” when one element can be mapped to itself, then

1Only after completing our proofs we became aware of the special case considered in [4] that is also NP hard but has
a weaker lower bound.

2

f2 is the sum of D(n) rank functions. In this case, the constants are D(n) = n!
∑n
k=0(−1)k/k! [13], and

D′(n− 1) =
∑n−1
k=0(n− 2)!(n− 1− k)!(−1)k. Both constants are computable in polynomial time.

If |As|+ |At| is kept constant, then f2(A) will be minimal if As∩t = ∅. Hence, we should not cut the edges
on both sides of a node in VB . Furthermore, |As||At| is maximal if |As| = |At| = (|As| + |At|)/2. If we
choose As and At accordingly, then adding edges to As, i.e., cutting more than n edges in Es ∪ Et, will
increase the cost, thanks to the choice of D(n) and D′(n− 1). Thus, for |A ∩ (Es ∪ Et)| ≥ n, the value of
f2 is smallest if A contains n/2 edges from either side and cuts off each node either from s or t. Note that
this f2 is submodular. Lastly, we choose α3 = 1, α2 = 10

∑
e∈EB

w(e) and α1 = 5α1n
2D′(n− 1).

2.2 Lower bound for edge-submodular (ES) (s, t)-cuts

In this section, we show a lower bound on the approximation factor of ES (s, t) cuts.
Theorem 1 (Lower bound for ES (s, t) cuts with nonnegative, monotone costs). For a fixed ε > 0, δ > 0,
any (randomized) approximation algorithm for the ES (s, t) cut problem with an approximation factor better
than n1/3−ε/(1 + δ) needs exponentially many queries.

We prove Theorem 1 with the technique of [7], also used in [5, 6, 8]. The proof

ts

Figure 1: Ladder graph

shows a type of input where even for a polynomial number of evaluations, it
is very unlikely that we can distinguish between two cost functions f , h that
may appear as input. Their optima differ by a large factor, say α. Any solution
for f that is within a factor of α of the optimum would be enough evidence
to discriminate f and h. Thus, no polynomial-time algorithm can guarantee an
approximation ratio better than α, since it would have to distinguish between the

two functions. To achieve a low probability of discrimination, we randomly pick a cut R ⊂ E and design f
so that for a query Q ⊆ E, f(Q) 6= h(Q) only if |Q∩R| is large, an event of exponentially small probability.
By a union bound argument, the probability of having f(Q) = h(Q) for a set of polynomially many queries
is still too large for an approximation guarantee better than α.

The graph in Figure 1 has k columns of edges, ` parallel paths from s to t, and n′ < k` = n nodes. Any
(s, t) cut cuts each path at least once. Thus, there are k` minimal (s, t) cuts. To sample a random cut R ⊂ E,
we choose one edge from each path uniformly with probability 1/k. Let β = (1 + δ)`/k and

h(Q) = min{|Q|, `}; f(Q) = min{|Q ∩R|+ min{|Q ∩R|, β}, `}.

We choose k = n1/3−ε and ` = n2/3+ε. The ratio of optima of h and f is `/β = n1/3−ε/(1 + δ). Let us
now look at the probability P (f(Q) 6= g(Q)) = P (f(Q) < g(Q)) for a given Q ⊆ E. If |Q| ≤ `, then the
probability

P (f(Q) < h(Q)) = P (|Q ∩R| > β)
increases as Q grows. If, on the other hand, |Q| ≥ `, then the probability

P (f(Q) < h(Q)) = P (|Q ∩R|+ min{|Q ∩R|, (1 + δ)`/k} < `)

decreases as Q grows. Hence, the probability of difference is largest when |Q| = `.

So let |Q| = `. Then we can distributeQ over at most d = ` and at least d > β paths to make P (|Q∩R| > β)
nonzero. If Q covers m ≤ k edges of a path, then the probability that Q includes the cut edge in this path is
m/k. Hence, |Q ∩ R| is the sum of d random variables, with E[|P ∩ R|] = |Q|/k = `/k. Each variable
takes values in {0, 1}. We can bound the probability of a large intersection via Hoeffding’s bound [14]:

P (|Q ∩R| ≥ (1 + δ)`/k) ≤ exp(−2δ2`2/(dk2)) ≤ exp(−2δ2`/k2) = exp(−2n3εδ2).

Since the probability of f(Q) < h(Q) is exponentially small, the theorem holds.

Note that this proof only relies on nonnegative monotone submodular functions, in fact, matroid rank func-
tions [7]. For general submodular functions, the lower bound is probably worse.

3 Approximation Algorithms

The difficulty of ESC cuts lies in the non-locality of the submodularity with respect to the graph structure. If
the submodularity is restricted to the sets of edges that share an adjacent node, and the function is modular on
anything coarser, then the problem is exactly solvable in polynomial time [3]. Even simpler, in the common
min-cut problem with a modular cost, there is no inherent edge submodularity. Our approximation algorithms

3

rely on a local approximation of the submodularity, that is, we split the set E into small local sets Si (single
edges or neighborhoods). The new cost function may be submodular within a set, but behaves in a modular
way across sets, i.e., f̂(A) =

∑k
i=1 fi(Si ∩A). Restricted submodularity or an appropriate approximation is

the basis for our bounds. In the sequel, A∗ ⊆ E denotes the optimal ES cut, and n = |V |.

3.1 Approximation of the cost function (acf)

Goemans et al. [7] present an approximation f̂ of a submodular function f with f̂(A) ≤ f(A) ≤ αf̂(A).
The approximation factor α is

√
|E|+ 1 if f is a matroid rank function, and O(

√
|E| log |E|) for general

monotone submodular functions. For an integer-valued polymatroid rank function whose maximum cost of
a single element is bounded (i.e., maxe∈E f(e) ≤ c < ∞), we can get an approximation within a factor
of α = O(

√
c|E|) by approximating the matroid expansion of the polymatroid (Section 10.3 in [15]). For

general nonmonotone submodular functions, only a lower bound is known [7].

The approximation is the square root of a modular function, i.e., of the form f̂(A) =
√∑

e∈A w(e)
where values w(e) are derived from the algorithm. The minimizer of f̂ is the same as the minimizer
of f̂2. Thus, we set the weight of each edge to w(e) and then solve a traditional min-cut (or (s, t)-cut)
with edge cost function f̂2(A) =

∑
e∈A w(e). This problem can be efficiently and exactly solved. Let

B ∈ argminB′⊂E andB′ a cut f̂
2(B′). The approximation quality α of f̂ implies that

f(B) ≤ αf̂(B) ≤ αf̂(A∗) ≤ αf(A∗).
For planar graphs with O(n) edges, the approximation factor becomes O(

√
n) or O(

√
n log n). Note that the

graph in the proof of Thm. 1 is planar. Therefore, for planar graphs and matroid rank functions, the above
procedure achieves an lower/upper bound gap of Ω(n1/3) versus O(n1/2).

3.2 Approximation via “polymatroidal network flows” (pf)

To restrict the submodular behavior of f to local regions, we can partition E into disjoint sets Ei and then
use f̂(A) =

∑
i f(A ∩ Ei). Locality in the graph is expressed by edges adjacent to the same vertex. Let

Π(A) = {A1, . . . , An} be an edge-partition of the (s, t)-cut A, where Ai only contains edges adjacent to
vi ∈ V (G). With PA denoting the set of such partitions, let

f̂(A) = min
Π(A)∈PA

∑
i

f(Ai), (2)

that is, each edge is assigned to its adjacent node either on the s or the t side of the cut. The algorithm for
polymatroidal network flows [3] solves an (s, t) cut for this f̂ if we use the following construction: Replace
each undirected edge in the graph by two opposing directed edges that are parallel with respect to the cost.
In polymatroidal flows, the edge capacities are defined by a submodular function on the set of incoming and
the set of outgoing edges for each node. We set this function, for both incoming and outgoing edges on each
node, to f restricted to the particular set. The dual of the polymatroidal max-flow is the minimum cut with
respect to a convolution of the capacities for incoming and outgoing sets [3], and the convolution is then
exactly Equation 2. The polymatroidal flow problem can be solved exactly in O(|E|6 log |E|) time with an
algorithm based on augmenting paths. The cost function f can be any submodular function.

For fixed s, t, let the set A∗ be the optimal directed (s, t) cut, and B the cut found by the approximation. Let
∆s(A) ⊂ V be the set of nodes adjacent to A on the s side, and ∆t(A) ⊂ V its analogue on the t side. The
set of edges adjacent to node v is δv. Then

f̂(A∗) ≤ min
{ ∑
vi∈∆s(A∗)

f(A∗ ∩ δvi),
∑

vj∈∆t(A∗)

f(A∗ ∩ δvj)
}

≤ min
{
|∆s(A∗)| max

vi∈∆s(A∗)
f(A∗ ∩ δvi), |∆t(A∗)| max

vj∈∆t(A∗)
f(A∗ ∩ δvj)

}
≤ min{ |∆s(A∗)|, |∆t(A∗)| } f(A∗).

The last inequality holds only for monotone nondecreasing submodular functions. Furthermore, we can
bound min{|∆s|, |∆t|} ≤ |V |/2. Let us now relate f(A∗) to f(B) for a a minimum f̂ -cost cut B. By
submodularity, we know that

∑
i f(Ai) ≥ f(

⋃
iAi) for any collection of disjoint sets {Ai}i. Hence, f(B) ≤

f̂(B) ≤ f̂(A∗) ≤ min{|∆s(A)|, |∆t(A)|}f(A∗). If we know that f(B)/f̂(B) = |V |−α, then we get a more
specific ratio f(B)/f(A∗) ≤ |V |1−α/2. On dense graphs where |E|1/4 log |E| > |V |, this approximation is
better than the one in the previous section.

4

qu mc gh ghl acf pf
0

0.5

1

1.5

2

qu mc gh ghl acf pf
0

0.5

1

1.5

qu mc gh ghl acf pf
0

1

2

3

qu mc gh ghl acf pf
0

5

10

15

20

Figure 2: Average approximation factors on (i) grids, (ii) clustered graphs, (iii) grids with large |A∗| and (iv)
small dense worst-case graphs.

3.3 Modular minimum cocycle basis with local improvements (ghl)

In this section, we use the modular approximation f̂(A) =
∑
e∈A f(e). The minimum cut for f̂ is simply the

common modular edge-cost min-cut (our “(mc)” baseline below). To improve on this single candidate, we
construct the minimum cut basis for the graph with weights f̂ . The cuts of a graph form a vector space over
F2, and the minimum weight basis for this space can be found by a minimum cut tree [16]. This Gomory-
Hu tree is computable by solving O(n) min-cuts [17]. The corresponding cut basis contains a min-cut with
respect to f̂ for any pair of vertices in the graph. Any of the n − 1 basis cuts is a candidate cut. We may
evaluate f on all of them and pick the minimum (our “(gh)” baseline below).

Among the basis cuts is the minimum cut B with respect to f̂ . Define the gain of an edge e with respect
to a set A to be ρe(A) = f(A ∪ {e}) − f(A). Furthermore, for the optimum A∗, we define γ(A∗) =
mine∈A∗ ρe(E \ {e})/maxe∈A∗ f(e). Then the approximation factor is at most

f(B)
f(A∗)

≤ |A∗|
1 + (|A∗| − 1)γ(A∗)

.

This ratio is between 1 for γ(A∗) = 1 and |A∗| for γ(A∗) = 0.

To locally improve on the set of basis cuts for f̂ , we use two upper bounds on the cost of any edge set. For
any B,C ⊆ E, we have [18]

f(B) ≤ h1(B) , f(C)−
∑

e∈C\B

ρe(E \ {e}) +
∑

e∈B\C

ρe(C)

f(B) ≤ h2(B) , f(C)−
∑

e∈C\B

ρe(C \ {e}) +
∑

e∈B\C

ρe(∅)

For each basis cut Ci, we set C = Ci treated as a constant and find the cut Bj,i that minimizes hj(B). We
can continue by taking the better of the two as the comparison set C, and so on, until no Bj,i has a lower
f -cost than the initial basis cut Ci.

The minimizer of hj can again be found via a modular min-cut with modified edge weights. Set

w1(e) =
{
ρe(E \ {e}) if e ∈ C
ρe(C) otherwise; w2(e) =

{
ρe(C \ {e}) if e ∈ C
ρe(∅) otherwise.

With these weights, the modular weight of a cut B is∑
e∈B

w1(e) =
∑

e∈C∩B
ρe(E \ {e}) +

∑
e∈B\C

ρe(C) = h1(B)− f(C) +
∑
e∈C

ρe(E \ {e})︸ ︷︷ ︸
constant w.r.t.B

, (3)

and analogously for w2.

This approximation works well in practice, and only relies on standard min-cut solutions. The local im-
provement helps most if ρe(E \ {e}) is larger than zero for most edges (this does not hold, for instance, for
truncated matroid rank functions), and if the low cost ofA∗ with respect to f is based on interactions of small
sets of edges. We know that any edge in the optimal set A∗ occurs in at least one basis cut. If |A∗| > n, then
some basis cuts must contain more than one edge of A∗. The local step works if the edges in Ci ∪A∗ suffice
to reduce the new weight ρe(Ci) of any e ∈ A∗ \ Ci enough compared to the original weight f(e).

5

3.4 Experiments

Our experiments use randomly generated polymatroid rank functions and two types of synthetic graphs:
grids and loosely interconnected cliques. The graphs have between 50 and 100 edges. The algorithms were
implemented in Matlab with the help of a graph cut [19] and SFO toolbox [20]. For baselines, we compare
against the following three simple heuristics: (qu) Queyranne’s algorithm [21], even though g(X) = f(δX)
is only subadditive so no guarantees exists; (mc) a modular min-cut with edge weights w(e) = f(e); (gh) the
f -evaluated best out of all the cuts in a Gomory-Hu tree built with modular edge weights as in (mc). Figure 2
shows the results, normalized by an estimate of the optimal cost and then averaged. Averages are over 72
instances for the clustered graphs and 101 instances for the grid graphs. Of the three suggested algorithms,
(ghl) performs best on our instances. In (i) and (ii), |A∗| does not differ much from the number of edges in
a modular min-cut. In (iii), |A∗| is chosen to be large, and roughly bi-partitions the graph – that is where the
bound for (pf) becomes worse. Overall, the factors are good. Yet the mincut-based comparison algorithms
(mc), (gh) can reach their worst-case factor |A∗| = n2/4 in a clique, and (qu) performs arbitrarily poorly on
some graphs. The results in (iv) are on such graphs with 7 to 10 nodes – note the y axis. In these graphs,
better bounds or the local improvement come into play: (ghl), (acf), and (pf) always find the best solution. Of
the three suggested algorithms, the running time of (ghl) is most uniform. The cutting plane method in (acf)
converges very slowly for some functions, even on less than 100 edges.

Acknowledgments: We wish to thank Jens Vygen for the intractable subadditive function example, and
Andrew Guillory for his Gomory-Hu tree code.

References
[1] J. Bilmes and C. Bartels. On triangulating dynamic graphical models. In Uncertainty in Artificial Intelligence (UAI),

pages 47–56, Acapulco, Mexico, 2003. Morgan Kaufmann Publishers.
[2] B. Korte and J. Vygen. Combinatorial Optimization - Theory and Algorithms. Springer, 2008.
[3] E. L. Lawler and C. U. Martel. Computing maximal “Polymatroidal” network flows. Mathematics of Operations

Research, 7(3):334–347, 1982.
[4] P. Zhang, Cai J.-Y, L.-Q. Tang, and Wen-Bo Zhao. Approximation and hardness results for label cut and related

problems. J Comb Optim, 2009. Online First.
[5] Z. Svitkina and L. Fleischer. Submodular approximation: Sampling-based algorithms and lower bounds. In FOCS,

2008.
[6] G. Goel, C. Karande, P. Tripati, and L. Wang. Approximability of combinatorial problems with mult-agent sub-

modular cost functions. In FOCS, 2009.
[7] M. X. Goemans, N. J. A. Harvey, A. Iwata, and V. S. Mirrokni. Approximating submodular functions everywhere.

In SODA, 2009.
[8] S. Iwata and K. Nagano. Submodular function minimization under covering constraints. In FOCS, 2009.
[9] J. Vondrák. Symmetry and approximability of submodular maximization problems. In FOCS, 2009.

[10] D. Wagner and F. Wagner. Between min cut and graph bisection. In FOCS, pages 744–750, 1993.
[11] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters. Theory of Computing, 2:249–

266, 2006.
[12] S. Khot. Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique. In Proceedings of the

45th Annual IEEE Symposium on FOCS, pages 136–145, 2004.
[13] R. P. Stanley. Enumerative Combinatorics, volume I of Cambridge Studies in Advanced Mathematics. Cambridge

University Press, 1997.
[14] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical

Association, 58:13–30, 1963.
[15] H. Narayanan. Submodular Functions and Electrical Networks. Elsevier Science, 1997.
[16] F. Bunke, H. W. Hamacher, F. Maffioli, and A. Schwahn. Minimum cut bases in undirected networks. Discrete

Applied Mathematics, In Press, 2009.
[17] R. E. Gomory and T. Hu. Multi-terminal network flows. Journal of the SIAM, 9(4), 1961.
[18] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing submodular

functions - i. Math. Program., 14:265–294, 1978.
[19] Shai Bagon. Matlab wrapper for graph cut, December 2006. http://www.wisdom.weizmann.ac.il/

˜bagon.
[20] Andreas Krause. Matlab toolbox for submodular function optimization, 2009. http://www.cs.caltech.

edu/˜krausea/sfo/.
[21] M. Queyranne. Minimizing symmetric submodular functions. Mathematical Programming, 82:3–12, 1998.

6

