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Abstract. We analyze the expected cost of a greedy active learning al-
gorithm. Our analysis extends previous work to a more general setting in
which different queries have different costs. Moreover, queries may have
more than two possible responses and the distribution over hypotheses
may be non uniform. Specific applications include active learning with
label costs, active learning for multiclass and partial label queries, and
batch mode active learning. We also discuss an approximate version of
interest when there are very many queries.

1 Motivation

We first motivate the problem by describing it informally. Imagine two people
are playing a variation of twenty questions. Player 1 selects an object from a
finite set, and it is up to player 2 to identify the selected object by asking
questions chosen from a finite set. We assume for every object and every question
the answer is unambiguous: each question maps each object to a single answer.
Furthermore, each question has associated with it a cost, and the goal of player 2
is to identify the selected object using a sequence of questions with minimal cost.
There is no restriction that the questions are yes or no questions. Presumably,
complicated, more specific questions have greater costs. It doesn’t violate the
rules to include a single question enumerating all the objects (Is the object a
dog or a cat or an apple or...), but for the game to be interesting it should be
possible to identify the object using a sequence of less costly questions.

With player 1 the human expert and player 2 the learning algorithm, we
can think of active learning as a game of twenty questions. The set of objects is
the hypothesis class, the selected object is the optimal hypothesis with respect
to a training set, and the questions available to player 2 are label queries for
data points in the finite sized training set. Assuming the data set is separable,
label queries are unambiguous questions (i.e. each question has an unambiguous
answer). By restricting the hypothesis class to be a set of possible labelings of
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the training set (i.e. the effective hypothesis class for some other possibly infinite
hypothesis class), we can also ensure there is a unique zero-error hypothesis. If
we set all question costs to 1, we recover the traditional active learning problem
of identifying the target hypothesis using a minimal number of labels.

However, this framework is also general enough to cover a variety of active
learning scenarios outside of traditional binary classification.

– Active learning with label costs If different data points are more or
less costly to label, we can model these differences using non uniform label
costs. For example, if a longer document takes longer to label than a shorter
document, we can make costs proportional to document length. The goal is
then to identify the optimal hypothesis as quickly as possible as opposed to
using as few labels as possible. This notion of label cost is different than the
often studied notion of misclassification cost. Label cost refers to the cost of
acquiring a label at training time where misclassification cost refers to the
cost of incorrectly predicting a label at test time.

– Active learning for multiclass and partial label queries We can di-
rectly ask for the label of a point (Is the label of this point “a”, “b”, or
“c”?), or we can ask less specific questions about the label (Is the label of
this point “a” or some other label?). We can also mix these question types,
presumably making less specific questions less costly. These kinds of partial
label queries are particularly important when examples have structured la-
bels. In a parsing problem, a partial label query could ask for the portion of
a parse tree corresponding to a small phrase in a long sentence.

– Batch mode active learning Questions can also be queries for multiple
labels. In the extreme case, there can be a question corresponding to every
subset of possible single data point questions. Batch label queries only help
the algorithm reduce total label cost if the cost of querying for a batch of
labels is in some cases less than the of sum of the corresponding individual
label costs. This is the case if there is a constant additive cost overhead
associated with asking a question or if we want to minimize time spent
labeling and there are multiple labelers who can label examples in parallel.

Beyond these specific examples, this setting applies to any active learning prob-
lem for which different user interactions have different costs and are unambiguous
as we have defined. For example, we can ask questions concerning the percentage
of positive and negative examples according to the optimal classifier (Does the
optimal classifier label more than half of the data set positive?). This abstract
setting also has applications outside of machine learning.

– Information Retrieval We can think of a question asking strategy as an
index into the set of objects which can then be used for search. If we make the
cost of a question the expected computational cost of computing the answer
for a given object, then a question asking strategy with low cost corresponds
to an index with fast search time. For example, if objects correspond to
points in <n and questions correspond to axis aligned hyperplanes, a question
asking strategy is a kd-tree.



– Compression A question asking strategy produces a unique sequence of
responses for each object. If we make the cost of a question the log of the
number of possible responses to that question, then a question asking strat-
egy with low cost corresponds to a code book for the set of objects with
small code length [5].

Interpreted in this way, active learning, information retrieval, and compression
can be thought of as variations of the same problem in which we minimize
interaction cost, computation cost, and code length respectively.

In this work we consider this general problem for average-case cost. The
object is selected at random and the goal is to minimize the expected cost of
identifying the selected object. The distribution from which the object is drawn
is known but may not be uniform. Previous work [11, 6, 1, 3, 4] has shown simple
greedy algorithms are approximately optimal in certain more restrictive settings.
We extend these results to our more general setting.

2 Preliminaries

We first review the main result of Dasgupta [6] which our first bound extends. We
assume we have a finite set of objects (for example hypotheses) H with |H| = n.
A randomly chosen h∗ ∈ H is our target object with a known positive π(h)
defining the distribution over H by which h∗ is drawn. We assume minh π(h) > 0
and |H| > 1. We also assume there is a finite set of questions q1, q2, ...qm each
of which has a positive cost c1, c2, ...cm. Each question qi maps each object to
a response from a finite set of answers A ,

⋃
h,i{qi(h)} and asking qi reveals

qi(h∗), eliminating from consideration all objects h for which qi(h) 6= qi(h∗). An
active learning algorithm continues asking questions until h∗ has been identified
(i.e. we have eliminated all but one of the elements from H). We assume this is
possible for any element in H. The goal of the learning algorithm is to identify h∗

with questions incurring as little cost as possible. Our result bounds the expected
cost of identifying h∗.

We assume that the distribution π, the hypothesis class H, the questions qi,
and the costs ci are known. Any deterministic question asking strategy (e.g. a de-
terministic active learning algorithm taking in this known information) produces
a decision tree in which internal nodes are questions and the leaves are elements
of H. The cost of a query tree T with respect to a distribution π, C(T, π), is
defined to be the expected cost of identifying h∗ when h∗ is chosen according
to π. We can write C(T, π) as C(T, π) =

∑
h∈H π(h)cT (h) where cT (h) is the

cost to identify h as the target object. cT (h) is simply the sum of the costs of
the questions along the path from the root of T to h. We define πS to be π
restricted and normalized w.r.t. S. For s ∈ S, πS(s) = π(s)/π(S), and for s /∈ S,
πS(s) = 0. Tree cost decomposes nicely.

Lemma 1. For any tree T and any S =
⋃

i Si with ∀i,jS
i ∩ Sj = ∅, S 6= ∅

C(T, πS) =
∑

i

πS(Si)C(T, πSi)



Algorithm 1 Cost Sensitive Greedy Algorithm
1: S ⇐ H
2: repeat
3: i = argmax

i
∆i(S, πS)/ci

4: S ⇐ {s ∈ S : qi(s) = qi(h
∗)}

5: until |S| = 1

We define the version space to be the subset of H consistent with the answers
we have received so far. Questions eliminate elements from the version space.
For a question qi and a particular version space S ⊆ H, we define Sj , {s ∈ S :
qi(s) = j}. With this notation the dependence on qi is suppressed but understood
by context. As shorthand, for a distribution π we define π(S) =

∑
s∈S π(s). On

average, asking question qi shrinks the absolute mass of S with respect to a
distribution π by

∆i(S, π) ,
∑

j∈A

π(Sj)
π(S)

(
∑

k 6=j

π(Sk)) = π(S)−
∑

j∈A

π(Sj)2

π(S)

We call this quantity the shrinkage of qi with respect to (S, π). We note ∆i(S, π)
is only defined if π(S) > 0. If qi has cost ci, we call ∆i(S,π)

ci
the shrinkage-cost

ratio of qi with respect to (S, π).
In previous work [6, 1, 3], the greedy algorithm analyzed is the algorithm that

at each step chooses the question qi that maximizes the shrinkage with respect to
the current version space ∆i(S, πS). In our generalized setting, we define the cost
sensitive greedy algorithm to be the active learning algorithm which at each step
asks the question with the largest shrinkage-cost ratio ∆i(S, πS)/ci where S is
the current version space. We call the tree generated by this method the greedy
query tree. See Algorithm 1. Adler and Heeringa [1] also analyzed a cost-sensitive
method for the restricted case of questions with two responses and uniform π,
and our method is equivalent to theirs in this case. The main result of Dasgupta
[6] is that, on average, with unit costs and yes/no questions, the greedy strategy
is not much worse than any other strategy. We repeat this result here.

Theorem 1. Theorem 3 [6] If |A| = 2 and ∀i ci = 1, then for any π the greedy
query tree T g has cost at most

C(T g, π) ≤ 4C∗ ln 1/(min
h∈H

π(h))

where C∗ = minT C(T, π).

For a uniform, π, the log term becomes ln |H|, so the approximation factor
grows with the log of the number of objects. In the non uniform case, the
greedy algorithm can do significantly worse. However, Kosaraju et al. [11] and
Chakaravarthy et al. [3] show a simple rounding method can be used to remove



dependence on π . We first give an extension to Theorem 1 to our more gen-
eral setting. We then show we how to remove dependence on π using a similar
rounding method. Interestingly, in our setting this rounding method introduces
a dependence on the costs, so neither bound is strictly better although together
they generalize all previous results.

3 Cost Independent Bound

Theorem 2. For any π the greedy query tree T g has cost at most

C(T g, π) ≤ 12C∗ ln 1/(min
h∈H

π(h))

where C∗ , minT C(T, π).

What is perhaps surprising about this bound is that the quality of approximation
does not depend on the costs themselves. The proof follows part of the strategy
used by Dasgupta [6]. The general approach is to show that if the average cost
of some question tree is low, then there must be at least one question with
high shrinkage-cost ratio. We then use this to form the basis of an inductive
argument. However, this simple argument fails when only a few objects have
high probability mass.

We start by showing the shrinkage of qi monotonically decreases as we elim-
inate elements from S.

Lemma 2. Extension of Lemma 6 [6] to non binary queries. If T ⊆ S ⊆ H,
and T 6= ∅ then, ∀i, π, ∆i(T, π) ≤ ∆i(S, π).

Proof. For |S| = 1 the result is immediate since |T | ≥ 1 and therefore S = T .
We show that if |S| > 2, removing any single element a ∈ S \T from S does not
increase ∆i(S, π). The lemma then follows since we can remove all of S \T from
S an element at a time. Assume w.l.o.g. a ∈ Sk for some k. Here let A′ , A\{k}

∆i(S − {a}, π) =
(π(Sk)− π(a))(π(S)− π(Sk))

π(S)− π(a)
+

∑

j∈A′

π(Sj)(π(S)− π(Sj)− π(a))
π(S)− π(a)

We show that this is term by term less than or equal to

∆i(S, π) =
π(Sk)(π(S)− π(Sk))

π(S)
+

∑

j∈A′

π(Sj)(π(S)− π(Sj))
π(S)

For the first term

(π(Sk)− π(a))(π(S)− π(Sk))
π(S)− π(a)

≤ π(Sk)(π(S)− π(Sk))
π(S)

because π(S) ≥ π(Sk) and π(a) ≥ 0. For any other term in the summation,

π(Sj)(π(S)− π(Sj)− π(a)))
π(S)− π(a)

≤ π(Sj)(π(S)− π(Sj))
π(S)

because π(S)− π(Sj) ≥ π(a) ≥ 0 and π(S) > π(a). ut



Obviously, the same result holds when we consider shrinkage-cost ratios.

Corollary 1. If T ⊆ S ⊆ H, and T 6= ∅ then for any i, π, ∆i(T, π)/ci ≤
∆i(S, π)/ci.

We define the collision probability of a distribution v over Z to be CP(v) ,∑
z∈Z v(z)2 This is exactly the probability two samples from v will be the same

and quantifies the extent to which mass is concentrated on only a few points
(similar to inverse entropy). If no question has a large shrinkage-cost ratio and
the collision probability is low, then the expected cost of any query tree must
be high.

Lemma 3. Extension of Lemma 7 [6] to non binary queries and non uniform
costs. For any set S and distribution v over S, if ∀i ∆i(S, v)/ci < ∆/c, then for
any R ⊆ S with R 6= ∅ and any query tree T whose leaves include R

C(T, vR) ≥ c

∆
v(R)(1− CP(vR))

Proof. We prove the lemma with induction on |R|. For |R| = 1, CP(vR) = 1 and
the right hand side of the inequality is zero. For R > 1, we lower bound the cost
of any query tree on R. At its root, any query tree chooses some qi with cost ci

that divides the version space into Rj for j ∈ A. Using the inductive hypothesis
we can then write the cost of a tree as

C(T, vR) ≥ ci +
∑

j∈A

vR(Rj)
c

∆
(v(Rj)(1− CP(vRj )))

= ci +
c

∆
v(R)

∑

j∈A

(vR(Rj)2 − vR(Rj)2CP(vRj ))

= ci +
c

∆
v(R)(1− 1 +

∑

j∈A

vR(Rj)2 − CP(vR))

Here we used
∑

j∈A

vR(Rj)2CP(vRj ) =
∑

j∈A

vR(Rj)2
∑

r∈Rj

vRj (r)2 =
∑

r∈R

vR(r)2 = CP(vR)

We now note v(R)(1−∑
j∈A vR(Rj)2) = v(R)−∑

j∈A v(Rj)2/v(R) = ∆i(R, v)

C(T, vR) ≥ ci +
c

∆
v(R)(1− CP(vR))−∆i(R, v)

c

∆

=
c

∆
v(R)(1− CP(vS)) +

∆ci −∆i(R, v)c
∆



Using Corollary 1, ∆i(R, v)/ci ≤ ∆i(S, v)/ci ≤ ∆/c, so ∆ci−∆i(R, v)c ≥ 0 and
therefore

C(R, vS) ≥ c

∆
v(R)(1− CP(vR))

which completes the induction. ut
This lower bound on the cost of a tree translates into a lower bound on the
shrinkage-cost ratio of the question chosen by the greedy tree.

Corollary 2. Extension of Corollary 8 [6] to non binary queries and non uni-
form costs. For any S ⊆ H with S 6= ∅ and query tree T whose leaves contain
S, there must be a question qi with ∆i(S, πS)/ci ≥ (1− CP(πS))/C(T, πS)

Proof. Suppose this is not the case. Then there is some ∆/c < (1−CP(πS))/C(T, πS)
such that ∀i ∆i(S, πS)/ci ≤ ∆/c. By Lemma 3 (with v , πS , R , S),

C(T, πS) ≥ πS(S)
c

∆
(1− CP(πS)) > πS(S)C(T, πS) = C(T, πS)

which is a contradiction. ut
A special case which poses some difficulty for the main proof is when for some

S ⊆ H we have CP(πS) > 1/2. First note that if CP(πS) > 1/2 one object h0 has
more than half the mass of S. In the lemma below, we use R , S \ {h0}. Also
let δi be the relative mass of the hypotheses in R that are distinct from h0 w.r.t.
question qi. δi , πR({r ∈ R : qi(h0) 6= qi(r)}) In other words, when question
qi is asked, R is divided into a set of hypotheses that agree with h0 (these have
relative mass 1 − δi) and a set of hypotheses that disagree with h0 (these have
relative mass δi). Dasgupta [6] also treats this as a special case. However, in
the more general setting treated here the situation is more subtle. For yes or
no questions, the question chosen by the greedy query tree is also the question
that removes the most mass from R. In our setting this is not necessarily the
case. The left of Figure 1 shows a counter example. However, we can show the
fraction of mass removed from R by the greedy query tree is at least half the
fraction removed by any other question. Furthermore, to handle costs, we must
instead consider the fraction of mass removed from R per unit cost.

In this lemma we use π{h0} to denote the distribution which puts all mass
on h0. The cost of identifying h0 in a tree T ∗ is then C∗(h0) , C(T ∗, π{h0}).

Lemma 4. Consider any S ⊆ H and π with CP(πS) > 1/2 and π(h0) > 1/2.
Let C∗(h0) = C(T ∗, π{h0}) for any T ∗ whose leaves contain S. Some question qi

has δi/ci > 1/C∗(h0).

Proof. There is always a set of questions indexed by the set I with total cost∑
i∈I ci ≤ C∗(h0) that distinguish h0 from R within S. In particular, the set

of questions used to identify h0 in T ∗ satisfy this. Since the set identifies h0,∑
i∈I δi ≥ 1 which implies

∑

i∈I

ci

C∗(h0)
δi

ci
≥ 1/C∗(h0)



Fig. 1. Left: Counter example showing that when a single hypothesis h0 contains more
than half the mass, the query with maximum shrinkage is not necessarily the query
that separates the most mass from h0. Right: Notation for this case.

Because ci/C∗(h0) ∈ (0, 1] and
∑

i∈I ci/C∗(h0) ≤ 1, there must be a qi such
that δi/ci ≥ 1/C∗(h0). ut

Having shown that some query always reduces the relative mass of R by
1/C∗(h0) per unit cost, we now show that the greedy query tree reduces the
mass of R by at least half as much per unit cost.

Lemma 5. Consider any π and S ⊆ H with CP(πS) > 1/2, π(h0) > 1/2,
and a corresponding subtree T g

S in the greedy tree. Let C∗(h0) = C(T ∗, π{h0})
for any T ∗ whose leaves contain S. The question qi chosen by T g

S has δi/ci >
1/(2C∗(h0)).

Proof. We prove this by showing that the fraction removed from R per unit cost
by the greedy query tree’s question is at least half that of any other question.
Combining this with Lemma 4, we get the desired result.

We can write the shrinkage of qi in terms of δi. Here let A′ , A \ {qi(h0)}.
Since π(Sqi(h0)) = π(h0) + (π(S)− δiπ(R)), and π(S)− π(Sqi(h0)) = δiπ(R), we
have that

∆i(S, πS) = (πS(h0) + (1− δi)πS(R))δiπS(R) +
∑

j∈A′
πS(Sj)(πS(S)− πS(Sj))

We use
∑

j∈A′ πS(Sj) = δiπS(R).
We can then upper bound the shrinkage using πS(S)− πS(Sj) ≤ 1

∆i(S, πS) ≤ (πS(h0) + (1− δi)πS(R))δiπS(R) + δiπS(R) ≤ 2δiπS(R)

and lower bound the shrinkage using πS(h0) > 1/2 and πS(S) − πS(Sj) >
πS(h0) + (1− δi)πS(R) for any j ∈ A′

∆i(S, πS) ≥ 2(πS(h0) + (1− δi)πS(R))δiπS(R) ≥ δiπS(R)



Let qi be any question and qj be the question chosen by the greedy tree giving
∆j(S, πS)/cj ≥ ∆i(S, πS)/ci. Using the upper and lower bounds we derived,
we then know 2δjπS(R)/cj ≥ δiπS(R)/ci and can conclude 2δj/cj ≥ δi/ci.
Combining this with Lemma 4, δj/cj ≥ 1/(2C∗(h0). ut

The main theorem immediately follows from the next theorem.

Theorem 3. If T ∗ is any query tree for π and T g is the greedy query tree for
π, then for any S ⊆ H corresponding to the subtree T g

S of T g,

C(T g
S , πS) ≤ 12C(T ∗, πS) ln

π(S)
minh∈S π(h)

Proof. In this proof we use C∗(S) as a short hand for C(T ∗, πS). Also, we
use min(S) for mins∈S π(S). We proceed with induction on |S|. For |S| = 1,
C(T g

S , πS) is zero and the claim holds. For |S| > 1, we consider two cases.
Case one: CP(πS) ≤ 1/2

At the root of T g
S , the greedy query tree chooses some qi with cost ci that

reduces the version space to Sj when qi(h∗) = j. Let π(S+) , max{π(Sj) : j ∈
A} Using the inductive hypothesis

C(T g
S , πS) = ci +

∑

j∈A

πS(Sj)C(TSj , πSj )

≤ ci +
∑

j∈A

12πS(Sj)C∗(Sj) ln
π(Sj)

min(Sj)

≤ ci + 12(
∑

j∈A

πS(Sj)C∗(Sj)) ln
π(S+)
min(S)

Now using Lemma 1, π(S+) = π(S)πS(S+), and then ln(1− x) ≤ −x

C(T g
S , πS) ≤ ci + 12C∗(S) ln

π(S)
min(S)

+ 12C∗(S) ln πS(S+)

≤ ci + 12C∗(S) ln
π(S)

min(S)
− 12C∗(S)(1− πS(S+))

πS(S+) ≥ ∑
j∈A πS(Sj)2 because this sum is an expectation and ∀j πS(S+) ≥

πS(Sj). From this follows

C(T g
S , πS) ≤ ci + 12C∗(S) ln

π(S)
min(S)

− 12C∗(S)(1−
∑

j∈A

πS(Sj)2)

= ci + 12C∗(S) ln
π(S)

min(S)
− 12C∗(S)ci

(1−∑
j∈A πS(Sj)2))

ci



(1−∑
j∈A πS(Sj)2) is ∆i(S, πS), so by Corollary 2 and using CP(πS) ≤ 1/2

C(T g
S , πS) ≤ ci + 12C∗(S) ln

π(S)
min(S)

− 12C∗(S)ci
1− CP(πS)

C∗(S)

= ci + 12C∗(S) ln
π(S)

min(S)
− 12(1− CP(πS))ci

≤ 12C∗(S) ln
π(S)

min(S)

which completes this case.
Case two: CP(πS) > 1/2

The hypothesis with more than half the mass, h0, lies at some depth D in
the greedy tree T g

S . Counting the root of T g
S as depth 0, D ≥ 1. At depth d > 0,

let q0, q1, ...qd−1 be the questions asked so far, c0, c1, ...cd−1 be the costs of these
questions, and Cd =

∑d−1
i=0 ci be the total cost incurred. At the root, C0 = 0.

At depth d < D, we define Rd to be the set of objects other than h0 that
are still in the version space along the path to h0. R0 , S \ {h0} and for d > 0
Rd , Rd−1 \ {h : qd−1(h) 6= qd−1(h0)}. In other words, Rd is Rd−1 with the
objects that disagree with h0 on qd−1 removed. All of the objects in Rd have the
same response as h0 for q0, q1, ..., qd−1. The right of Figure 1 shows this case.

We first bound the mass remaining in Rd as a function of the label cost
incurred so far. For d > 0, using Lemma 5,

π(Rd) ≤ π(R0)
d−1∏

i=0

(1− ci

2C∗(h0)
) ≤ π(R0)e−Cd/(2C∗(h0))

Using this bound, we can bound CD, the cost of identifying h0 (i.e. C(T g
S , h0)).

First note that π(RD−1) ≥ min(R0) since at least one object is left in RD−1.
Combining this with the upper bound on the mass of Rd, we have if D− 1 > 0.

CD−1 ≤ 2C∗(h0) ln(π(R0)/ min(R0))

This clearly also holds if D−1 = 0, since, C0 = 0. We now only need to bound the
cost of the final question (the question asked at level D−1). If the final question
had cost greater than 2C∗(h0), then by Lemma 5, this question would reduce
the mass of the set containing h0 to less than π(h0). This is a contradiction, so
the final question must have cost no greater than 2C∗(h0).

CD ≤ 2C∗(h0) ln
π(R0)

min(R0)
+ 2C∗(h0)

We use A′d−1 , A \ qd−1(h0). Let s ∈ Sj
d be the set of objects removed

from Rd−1 with the question at depth d − 1 such that qd−1(s) = j, that is
Rd−1 = Rd +

⋃
j∈A′d−1

Sj
d. Let Sd =

⋃
j∈A′d−1

Sj
d. The right of Figure 1 illustrates

this notation. A useful variation of Lemma 1 we use in the following is that for
S = S1 ∪ S2 and S1 ∩ S2 = ∅, π(S)C∗(S) = π(S1)C∗(S1) + π(S2)C∗(S2).



We can write

π(S)C(T g
S , πS) a= π(h0)CD +

D∑

d=1

∑

j∈A′d−1

π(Sj
d)(Cd + C(TSj

d
, πSj

d
))

b≤ π(h0)CD +
D∑

d=1

π(Sd)Cd +
D∑

d=1

∑

j∈A′d−1

π(Sj
d)12C∗(Sj

d) ln
π(Sj

d)

min(Sj
d)

c≤ π(h0)CD + π(R0)CD + 12π(R0)C∗(R0) ln
π(R0)

min(R0)
d≤ 2π(h0)CD + 12π(R0)C∗(R0) ln

π(R0)
min(R0)

Here a) decomposes the total cost into the cost of identifying h0 and the cost of
each branch leaving the path to h0. For each of these branches the total cost is
the cost incurred so far plus the cost of the tree rooted at that branch. b) uses
the inductive hypothesis, c) uses ∀i,jSi ∩ Sj = ∅ and

⋃
d Sd = R0, and d) uses

π(R0) < π(h0). Continuing

π(S)C(T g
S , πS)

a≤ 4π(h0)C∗(h0)(ln
π(R0)

min(R0)
+ 1) + 12π(R0)C∗(R0) ln

π(R0)
min(R0)

b≤ 4π(h0)C∗(h0)(ln
π(S)

min(S)
+ 1) + 12π(R0)C∗(R0) ln

π(S)
min(S)

where a) uses our bound on CD and b) uses R0 ⊂ S. Finally

π(S)C(T g
S , πS) ≤ 12π(h0)C∗(h0) ln

π(S)
min(S)

+ 12π(R0)C∗(R0) ln
π(S)

min(S)

= π(S)12C∗(S) ln
π(S)

min(S)

where we use π(S) > 2min(S) and therefore ln π(S)
min(S) > ln 2 > .5. Dividing both

sides by π(S) gives the desired result. ut

4 Distribution Independent Bound

We now show the dependence on π can be removed using a variation of the
rounding trick used by Kosaraju et al. [11] and Chakaravarthy et al. [3]. The
intuition behind this trick is that we can round up small values of π to obtain
a distribution π′ in which ln(1/ minh∈H π′(h)) = O(lnn) while ensuring that for
any tree T , C(T, π)/C(T, π′) is bounded above and below by a constant. Here
n = |H|. When the greedy algorithm is applied to this rounded distribution, the
resulting tree gives an O(log n) approximation to the optimal tree for the original



distribution. In our cost sensitive setting, the intuition remains the same, but
the introduction of costs changes the result.

Let cmax , maxi ci and cmin , mini ci. In this discussion, we consider irre-
ducible query trees, which we define to be query trees which contain only ques-
tions with non-zero shrinkage. Greedy query trees will always have this property
as will optimal query trees. This property let’s us assume any path from the
root to a leaf has at most n nodes with cost at most cmaxn because at least
one hypothesis is eliminated by each question. Define π′ to be the distribution
obtained from π by adding cmin/(cmaxn

3) mass to any hypothesis h for which
π(h) < cmin/(cmaxn

3). Subtract the corresponding mass from a single hypoth-
esis hj for which π(hj) ≥ 1/n (there must at least one such hypothesis). By
construction, we have that mini π′(hi) ≥ cmin/(cmaxn

3). We can also bound the
amount by which the cost of a tree changes as a result of rounding

Lemma 6. For any irreducible query tree T and π,

1
2
C(T, π) ≤ C(T, π′) ≤ 3

2
C(T, π)

Proof. For the first inequality, let h′ be the hypothesis we subtract mass from
when rounding. The cost to identify h′, cT (h′) is at most cmaxn. Since we subtract
at most cmin/(cmaxn

2) mass and cT (h′) ≤ cmaxn, we then have

C(T, π′) ≥ C(T, π)− cmin

cmaxn2
cT (h′) ≥ C(T, π)− cmin

n
≥ 1

2
C(T, π)

The last step uses and C(T, π) > cmin and n > 2. For the second inequality, we
add at most cmin/(cmaxn

3) mass to each hypothesis and
∑

h cT (h) < cmaxn
2, so

C(T, π′) ≤ C(T, π) +
∑

h∈H

cmin

cmaxn3
cT (h) ≤ C(T, π) +

cmin

n
≤ 3

2
C(T, π)

The last step again uses C(T, π) > cmin and n > 2 ut
We can finally give a bound on the greedy algorithm applied to π′, in terms

of n and cmax/cmin

Theorem 4. For any π the greedy query tree T g for π′ has cost at most

C(T g, π) ≤ O(C∗ ln(n
cmax

cmin
))

where C∗ , minT C(T, π).

Proof. Let T ′ be an optimal tree for π′ and T ∗ be an optimal tree for π. Using
Theorem 2, mini π′(hi) ≥ cmin/(cmaxn

3), and Lemma 6.

C(T g, π) ≤2C(T g, π′) ≤ 72C(T ′, π′) ln(n
cmax

cmin
)

≤72C(T ∗, π′) ln(n
cmax

cmin
) ≤ 108C(T ∗, π) ln(n

cmax

cmin
)

ut



k > 2 Non uniform ci Non uniform π Result

Kosaraju et al. [11] Y N Y O(log n)
Dasgupta [6] N N Y O(log(1/ minh π(h)))

Adler and Heeringa [1] N Y N O(log n)
Chakaravarthy et al. [3] Y N Y O(log k log n)
Chakaravarthy et al. [4] Y N N O(log n)

This paper Y Y Y O(log(1/ minh π(h)))
This paper Y Y Y O(log(n maxi ci/ mini ci))

Table 1. Summary of approximation ratios achieved by related work. Here n is the
number of objects, k is the number of possible responses, ci are the question costs, and
π is the distribution over objects.

5 ε-Approximate Algorithm

Some of the non traditional active learning scenarios involve a large number
of possible questions. For example, in the batch active learning scenario we
describe, there may be a question corresponding to every subset of single data
point questions. In these scenarios, it may not be possible to exactly find the
question with largest shrinkage-cost ratio. It is not hard to extend our analysis
to a strategy that at each step finds a question qi with

∆i(S, πS)/ci ≥ (1− ε)max
j

∆j(S, πS)/cj

for ε ∈ [0, 1). One can show ε > 0 only introduces an 1/(1 − ε) factor into the
bound. Kosaraju et al. [11] report a similar extension to their result.

6 Related Work

Table 1 summarizes previous results analyzing greedy approaches to this prob-
lem. A number of these results were derived independently in different contexts.
Our work gives the first approximation result for the general setting in which
there are more than two possible responses to questions, non uniform question
costs, and a non uniform distribution over objects. We give bounds for two al-
gorithms, one with performance independent of the query costs and one with
performance independent of the distribution over objects. Together these two
bounds match all previous bounds for less general settings. We also note that
Kosaraju et al. [11] only mention an extension to non binary queries (Remark
1), and our work is the first to give a full proof of an O(log n) bound for the case
of non binary queries and non uniform distributions over objects..

Our work and the work we extend are examples of exact active learning. We
seek to exactly identify a target hypothesis from a finite set using a sequence of
queries. Other work considers active learning where it suffices to identify with
high probability a hypothesis close to the target hypothesis [7, 2]. The exact and
approximate problems can sometimes be related [10].



Most theoretical work in active learning assumes unit costs and simple label
queries. An exception, Hanneke [9] also considers a general learning framework
in which queries are arbitrary and have known costs associated with them. In
fact, the setting used by Hanneke [9] is more general in that questions are al-
lowed to have more than one valid answer for each hypothesis. Hanneke [9]
gives worst-case upper and lower bounds in terms of a quantity called the Gen-
eral Identification Cost and related quantities. There are interesting parallels
between our average-case analysis and this worst-case result.

Practical work incorporating costs in active learning [12, 8] has also consid-
ered methods that maximize a benefit-cost ratio similar in spirit to the method
used here. However, Settles et al. [12] suggests this strategy may not be sufficient
for practical cost savings.

7 Open Problems

Chakaravarthy et al. [3] show it is NP-hard to approximate the optimal query
tree within a factor of Ω(log n) for binary queries and non uniform π. This hard-
ness result is with respect to the number of objects. Some open questions remain.
For the more general setting with non uniform query costs, is there an algorithm
with an approximation ratio independent of both π and ci? The simple round-
ing technique we use seems to require dependence on ci, but a more advanced
method could avoid this dependence. Also, can the Ω(log n) hardness result be
extended to the more restrictive case of uniform π? It would also be interesting
to extend our analysis to allow for questions to have more than one valid answer
for each hypothesis. This would allow queries which ask for a positively labeled
example from a set of examples. Such an extension appears non trivial, as a
straightforward extension assuming the given answer is randomly chosen from
the set of valid answers produces a tree in which the mass of hypotheses is split
across multiple branches, affecting the approximation.

Much work also remains in the analysis of other active learning settings with
general queries and costs. Of particular practical interest are extensions to ag-
nostic algorithms that converge to the correct hypothesis under no assumptions
[7, 2]. Extensions to treat label costs, partial label queries, and batch mode ac-
tive learning are all of interest, and these learning algorithms could potentially
be extended to treat these three sub problems at once using a similar setting.

For some of these algorithms, even without modification we can guarantee
the method does no worse than passive learning with respect to label cost. In
particular, Dasgupta et al. [7] and Beygelzimer et al. [2] both give algorithms
that iterate through T examples, at each step requesting a label with probability
pt. These algorithm are shown to not do much worse (in terms of generalization
error) than the passive algorithm which requests every label. Because the al-
gorithm queries for labels for a subset of T i.i.d. examples, the label cost of
the algorithm is also no worse than the passive algorithm requesting T random
labels. It remains an open problem however to show these algorithms can do
better than passive learning in terms of label cost (most likely this will require
modifications to the algorithm or additional assumptions).
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