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ABSTRACT

We present a new multilingual statistical MT word align-
ment model based on a simple extension of the IBM and
HMM Models and a two-step alignment procedure. Prelim-
inary results on a small hand-aligned subset of the Europarl
corpus show a 7% relative improvement over a state of the
art alignment model.

1. INTRODUCTION
The compilation of parallel bilingual corpora such as the
Canadian Parliamentary Proceedings (Hansards) has un-
deniably contributed to the success of data-driven machine
translation approaches. The recent availability of multilin-
gual corpora (texts translated in three or more languages)
such as Europarl [1] presents new possibilities for statistical
models that exploit this potentially important source of in-
formation. One elusive goal of traditional machine transla-
tion has been to come up with an interlingual representation
of language which would greatly simplify translation from
any language to another. Data-driven approaches might take
us closer to achieving that goal. In this paper we set out for
a less ambitious project and try to answer the question

Can multilingual parallel translations help us learn
better word alignment models than bilingual transla-
tions alone can?

It is not clear, a priori, that the answer would be affir-
mative. One could make the reasonable assumption that,
when translating from language 1 to language 2, parallel
sentences in language 3 do not add any information not al-
ready contained in corresponding sentences in language 1.
It is however also clear that translations vary in quality and
style and it might very well be that a judicious use of the
parallel sentences can add to the robustness of our word
alignments.

The central question this paper addresses is whether there
is any benefit in using multilingual information even when
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only bilingual translation is required. Another important
question is how best to combine these parallel sources of in-
formation in a principled statistical framework. Here we opt
for a simple modular solution that allows us to easily and ef-
ficiently extend current state of the art MT word alignment
algorithms. This is especially important because, at least for
some languages, parallel data are more and more abundant.
The ability to scale up to large train set sizes is therefore
very desirable.

There has been an increasing interest in exploiting mul-
tilingual resources in a variety of natural language applica-
tions. Two works are particularly relevant to ours. Och and
Ney [2] train separate word alignment models for different
target languages and a common source language. When in-
ferring the optimal source language text given translations
in the target languages, the translation models are combined
to reduce search errors. We take a different tack and train a
single joint alignment model that incorporates the informa-
tion from several target languages at the same time. In [3], a
trilingual parallel corpus is used to improve alignments be-
tween sentences (as opposed to words) in a text. While the
two problems are different in terms of applicable alignment
techniques, fundamentally they are both about how best to
leverage parallel information that has a high degree of re-
dundancy.

The paper is organized as follows: Section 2 briefly
reviews the standard mathematics of bilingual word align-
ments following the presentation of Brown et al. [4]. Sec-
tion 3 introduces our statistical multilingual word alignment
model. We describe the experimental setup in section 4 and
present our results in section 5.

2. MT AND WORD ALIGNMENTS
Suppose we want to translate a target string f = fM

1 =
f1f2...fM to an source1 string e = eL

1 = e1e2...eL, where

1We follow the convention that we always translate from the target lan-
guage to the source language according to the noisy channel naming con-
vention. We think of the target string that we observe as a corrupted ver-
sion of the source string we want to recover. This is also consistent with the



M and L are the lengths of the target and source sentences2

respectively. In the standard statistical translation frame-
work [5], the problem of finding the best source translation
is modeled as recovering the most probable source string, ê,
which produces the target string after being sent through a
noisy channel:

ê = argmax
eL
1

P (fM
1 |eL

1 )P (eL
1 ) (1)

where P (fM
1 |eL

1 ) is the learned translation model and P (eL
1 )

a language model.
Hidden alignment variables, aM

1 , are introduced to fac-
torize P (fM

1 |eL
1 ) in terms of the translation probabilities of

individual words.
Using the hidden alignment variables, P (fM

1 |eL
1 ) can be

expressed as
∑

aM
1

P (fM
1 , aM

1 |eL
1 ) where aM

1 ranges over
all possible alignments between eL

1 and fM
1 . These align-

ment variables also enforce the constraint that each French
word aligns to at most one English word. Notation-wise, if
a word in position j in the French string is connected to a
word at position i in the English string, aj = i, and if it is
not connected to any English word, aj = 0, in which case fj

is connected to the special null word, e0. P (fM
1 , aM

1 |eL
1 )

can thus be written as

P (fM
1 , aM

1 |eL
1 ) =

M∏
j=1

P (M |eL
1 )P (aj |aj−1

1 , f j−1
1 ,M, eL

1 )·

P (fj |aj
1, f

j−1
1 ,M, eL

1 ) (2)
Machine translation under the framework described above

involves training the model using a parallel corpus of source
and target sentence pairs; then finding optimal source trans-
lations for each target sentence in the test set using eqn 1.

A byproduct of the training step above is that we induce
the values of the hidden alignment variables a, for example
during the expectation step of the Expectation Maximiza-
tion procedure that is typically used. The Viterbi align-
ment is the assignment to the a variables that maximizes
P (fM

1 , aM
1 |eL

1 ) and indicates which source word is the most
likely to explain the presence at position j of each target
word in the target sequence. Finding optimal alignments has
received increased attention in the last few years because
they have the potential to improve final translation quality
and can also be used to build bilingual word or phrase trans-
lation tables that can be fed to other systems. For examples
of different approaches to the alignment problem see [6, 7].

3. MULTILINGUAL ALIGNMENT TAG MODEL
Brown et al. [5] introduced IBM Models 1 through 5 by
using different factorizations and simplifications of eqn. 2.

original paper on statistical MT [5]. We also follow the convention from
the same paper to denote the target string by fM

1 , which stands for French
and the source string by eL

1 (English).
2We use the word sentence here loosely to mean a unit of translation,

typically a full sentence but possibly a fragment of a sentence, or several
sentences.

These models have been widely used in the MT community.
IBM Model4 and a few of its refinements has become the
standard baseline for word alignments. IBM Models 1 and
2 make drastic independence assumptions; they have, how-
ever, been found to be useful for initializing higher mod-
els as well as features in log-linear alignment models for
example. Models 3 and higher introduce the notion of fer-
tility, which describes explicitly how many and which tar-
get words a source word can connect to. Vogel et al. [8]
later introduced the HMM alignment model shown in eqn. 3.
This model also makes a number of strong independence as-
sumptions such as that the translation probability of the tar-
get word fj depends on nothing else given the source word
eaj it aligns to, but whereas models 1 and 2 assume align-
ment variables are independent of each other, the HMM
model assumes that the way the current target word is aligned
depends on how the preceding target word is aligned.

P (fM
1 , aM

1 |eL
1 ) = P (M |L)

M∏
j=1

P (aj |aj−1,M,L)·P (fj |eaj
)

(3)
The HMM model is simpler mathematically and less ex-

pensive computationally than IBM models 3 to 5. At the
same time the HMM model performance often approaches
that of Model4 (among the state of the art alignment mod-
els). For both reasons, several lines of previous work that
explored enriching alignment models with other sources of
information, for instance, part-of-speech information [9],
bilingual word clusters [10], or syntax-tree knowledge [11]
have built their models on top of the HMM model only. In
this paper, in addition to the HMM model we extend all
IBM models up to model 4. However, for ease of exposi-
tion and to relate our work to previous work, we describe
modifications to the HMM model. Extending the changes
to the other models is straightforward.

We introduce what we term the Alignment-tag Model.
Let gM

1 and sL
1 be two language sequences (German and

Spanish for example) pre-aligned to the French and English
strings fM

1 and eL
1 respectively. Precisely, what this means

is that for each word fi the corresponding tag gi is the Ger-
man word (possibly the null word) that aligns best to fi ac-
cording to a given alignment model. We can think of Ger-
man as a noisy feature of our target language, French. We
can then, using the probability chain rule in a similar fashion
as in eqn. 2, write the probability P (fM

1 , gM
1 , aM

1 |eL
1 , sL

1 ) as

P (fM
1 , gM

1 , aM
1 |eL

1 , sL
1 ) =

M∏
j=1

P (M |eL
1 , sL

1 )·

P (aj |aj−1
1 , f j−1

1 , gj−1
1 ,M, eL

1 , sL
1 )·

P (gj |aj
1, f

j−1
1 , gj−1

1 ,M, eL
1 , sL

1 )·
P (fj |aj

1, f
j−1
1 , gj

1,M, eL
1 , sL

1 ) (4)

Clearly if eqn. 2 is unwieldy, then eqn. 4 is even more so.



We introduce the following simplifying assumptions, again
basing our exposition around extending the HMM model:

P (M |eL
1 , sL

1 ) = P (M |L) (5)

P (aj |aj−1
1 , f j−1

1 , gj−1
1 ,M, eL

1 , sL
1 ) = P (aj |aj−1,M,L)

(6)

P (gj |aj
1, f

j−1
1 , gj−1

1 ,M, eL
1 , sL

1 ) =P (gj |saj ) (7)

P (fj |aj
1, f

j−1
1 , gj

1,M, eL
1 , sL

1 ) = P (fj |eaj ) (8)

where in (5), we assume the length, M , of the f sequence
(and thus also the length of the g tag sequence, which is
pre-aligned to f ) depends on nothing else given the length,
L of the e sequence (which is equal to the length of the s
sequence). In (6), we assume that, given aj−1, M , and L,
the alignment variable aj is independent of everything else.
In (7), gj is independent of everything else given the Span-
ish word at position aj ; and likewise in (8) for fj given the
English word at the same position aj . Fig. 1 is a graphical
representation of the independence assumptions described
above.

We end up with eqn. 9, which has a similar form to the
one describing the POS-tagged HMM model in [9].

P (fM
1 , gM

1 , aM
1 |eL

1 , sL
1 ) =P (M |L)

M∏
j=1

P (aj |aj−1,M,L)·

P (fj |eaj ) · (P (gj |saj ))
α (9)

where α ∈ [0, 1] is a discount exponent we add to the model
to decrease the importance of the P (gj |saj ) factor. This is
similar to what is done is speech recognition to control the
contribution of the language model to the overall probability
model. α gives us the option to correct for any imbalance
that might exist between these two probability scores (as
will be seen, we find that this helps in our results).

Note that compared to eqn. 3, the alignment variables
aM
1 are now being used to align both French to English, and

French’s features (German) to English’s features (Spanish).
As mentioned above, the model in eqn. 9 can easily be

generalized to the other IBM models. In this paper, we use
models 1, 2 and 4 in addition to the HMM model. We also
use the Refined Model 4 (4r), a further improvement over
Model 4 [6]. This alignment procedure involves generating
IBM Model 4 alignments in both directions (from the source
language to the target and vice versa), then intersecting the
two alignment sets and expanding them heuristically.

We will refer to our family of models as MxTy, where
x ∈ {‘1’, ‘2’, ‘hmm’, ‘4’} is the alignment model used to
obtain the alignments between g and f and between s and e.
y ∈ {‘1’, ‘2’, ‘hmm’, ‘4’, ‘4r’} is the final alignment model
in which the output probabilities P (f |e) have been replaced
by P (f |e) · P (g|s) as is shown in the case x =‘hmm’ in
eqn. 9.

The full alignment-tag algorithm is shown below.
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Fig. 1. Alignment-tag Model. Each random variable gj

and si in the sequences g and s is assigned the word in
the German and Spanish string resp. that best aligns with
the value of the random variable fj and ei resp. We can
therefore think of g and s as tag sequences for f and e resp.
Each alignment variable aj (1 ≤ j ≤ M ) decides both
which word ei (0 ≤ i ≤ L) connects to fj (1 ≤ j ≤ M ),
and which word si (0≤ i≤L) connects to gj (1≤ j ≤ M ).
The Naive Bayes-like assumption made by the model is clear
from the fact g and f are marginally dependent of each other
but independent conditioned on the alignment variables a.
Likewise for s and e. For simplicity the figure does not show
the dependence of the alignment variables on the source and
target lengths L and M . The languages used in this work
(German, Spanish, etc.) are also used to name the variables
g, s, f , and e but it should be noted that any languages could
be used. In particular, we could use a common language
(e.g., Finnish) both for g and s.

Model MxTy, x ∈ {1,2,hmm,4} y ∈ {1,2,hmm,4,4r}

Input: English, French, German, and Spanish sen-
tences that are translations of each other.

Output: English to French word alignments.

1. Using Model x, align Spanish to English, to gener-
ate Spanish tags for the English sentence.

2. Using Model x, align German to French, to gener-
ate German tags for the French sentence.

3. Using Model y with augmented output probabili-
ties, P (f |e) · P (g|s), generate English to French
word alignments.



4. EXPERIMENTAL SETUP
We describe our experimental setup in particular the data
processing steps we took to be able to use all the languages
at our disposition. Any references to specific languages
in this section and subsequent ones refer to the actual lan-
guages used as opposed to the placeholder languages used
above for ease of exposition.

Our corpus is a subset of Europarl, which was compiled
for statistical machine translation research by Koehn [1].
Specifically we use the corpus made available for the 2005
ACL workshop on machine translation [12]. Four parallel
corpora were provided: French-English (EN-FR), Spanish-
English (ES-EN), German-English (DE-EN), and Finnish-
English (FI-EN). These corpora originate from the same
European Parliament session transcript; however, because
of variations in preprocessing, paragraph segmentation, and
sentence alignment for each of the four pairs, the resulting
set of English sentences was different for each of the four
corpora. To resolve these differences, we aligned the En-
glish sentences from each corpus to each other and threw
out all mismatches and their corresponding translations. We
thus generated a single common set of English sentences
and their corresponding translations in the four other lan-
guages. Using this procedure, the final number of sentences
for each language was reduced from about 700k to 545379
sentences.

Another difficulty in performing word alignment exper-
iments using the Europarl corpus is that as of now no hand-
aligned data exist for any pair of languages. We therefore
hand-aligned 107 sentences from French to English, total-
ing about 5000 words3. Before we aligned enough data,
we also we used as gold standard a 2000-sentence subset of
automatic alignments provided by [12]. These alignments
were generated using the refined IBM Model4 using all of
the French-English corpus. The trends we observed on that
test set were similar to those on the current test set.

For training our Alignment-tag Model we use training
subsets of the full corpus ranging in size from 1k to 160k
sentence pairs. For the baseline, we used train set sizes
up to 700k, which corresponds to the largest bilingual cor-
pus we had at our disposition before we reduced its size
to make it suitable for our multilingual experiments as ex-
plained above. The maximum sentence length in the corpus
is 40 words. The number of running words in the 700k cor-
pus is about 15M words for French and 14M for English. In
the 160k train set, the number of words is 3.6M for French,
2.3M for Finnish, and around 3.1M words for the remaining
languages. Vocabulary size is 72k words for French, 55k for
English, 88k for Spanish, 155k for German, and 290k for
Finnish.

We used five EM training iterations each of Models 1,

3The hand-aligned corpus is available at http://www.cs.
washington.edu/homes/karim

2, HMM, 3, and 4. Each model being used to initialize the
next one. We tried several different variations in the training
schedule. The changes in performance were not significant
for IBM Model4, the model we mostly care about.

For a given sentence pair (Si, Ti), an alignment between
Si and Ti can be represented as the set of pairings Ai =
{(j, aj)|(j, aj) 6= (0, 0)}, where j is the position in the
source sentence and aj the position in the target sentence.
If one of j or aj is zero resp., we call (j, aj) a null pairing
to refer to the fact a source or target word resp. is aligned to
the null word.

It is common for human annotators to label pairings as
either sure or possible to allow for loose translations or
matching of idiomatic expressions. We follow this conven-
tion and define Si as the set of sure pairings and Pi that of
possible ones for the ith sentence pair.

Alignment Error Rate (AER) [13] is a well accepted
measure of alignment quality and favors high precision on
the sure set and high recall on the possible set. AER is de-
fined as

AER = 1−
∑D

i (|Ai ∩ Si|+ |Ai ∩ Pi|)∑D
i (|Si|+ |Ai|)

where Ai is the set of hypothesized alignments for sentence
pair i, and Si and Pi reference alignments defined as above.
D is the number of sentence pairs in the test corpus.

Finally, we follow the convention of evaluating our align-
ments on the basis of both AER as defined above and the
nonnull alignment AER. In the latter case, any null pair-
ings in the reference or the hypothesized alignments are re-
moved before the AER is computed. Typically the nonnull
alignment AER is lower than the regular AER. Large dif-
ferences between the two error rates can be informative of
model assumptions relating to null alignments. Unless spec-
ified otherwise, we present regular AER results; our nonnull
alignment results follow the same trend as regular ones.

5. RESULTS

The results in this section assume a scenario under which
we translate from English to French. Using the notation
introduced earlier, this means the e sequence is in French
and the f is in English.

Figure 2 shows baseline alignment error rates using dif-
ferent models and with varying amounts of training data.
The trends–the increasing but diminishing gains with larger
training sizes; and the consistent advantage of the higher
models over the training size range–are in line with what is
frequently reported in the word alignment literature (see for
example [6]).

Table 1 shows our best results obtained using the tag-
alignment model in eqn. 9, where both the g and the s lan-
guages are Spanish, and where the tags were generated us-
ing IBM Model4. In order to balance the effect of the an-
notation model with the true source/target language model,
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Fig. 2. French-English %AER baselines for different train-
ing set sizes.

we experimented with various weighting schemes on the
annotation model. Specifically, we exponentiate the factor
P (gj |saj

) to α = 0.1 in order to decrease the contribution
of tag alignment probability relative to the word alignment
probability.

Using 160k train sentences and model M4T4r (table 1),
the alignment error rate improves from 22.2% to 20.7%
(and, not shown in the table, from 20.0% to 18.5% mea-
sured using the nonnull alignment AER) compared to the
Refined IBM Model4. This constitutes a 7% relative im-
provement. Because it is reasonable to expect the amount of
bilingual data to exceed that of multilingual data at any point
of time, we also compare the performance of our model
trained using 160k sentences to baselines trained with more
data. Even when twice as much data is used to train the
baseline, the alignment-tag model keeps a slight edge. With
more than four times as much data, the baseline finally im-
proves on the alignment-tag model by 0.8% absolute. This
suggests that scalability should be an important considera-
tion in designing any models for multilingual alignments.

We should also note that we found 4k to be the thresh-
old above which we start seeing improvements from using
the alignment-tag model over the baseline. With fewer than
4k sentences, the AER is high enough that the noise in the
tags hurts us. This is of course very much expected and
confirms the more accurate the tags the better the overall
performance. This also suggests that an iterative procedure
that cycles between improving the alignments between dif-
ferent language pairs, which in turn are used as for each
other might work well.

As one would expect, Model4 tags help improve M4T1
and M4T2 (and M4Thmm to a lesser degree) models to a
greater extent than they help M4T4 or M4T4r. In the lat-
ter case the tag quality is no better than the final alignment
model while in the former cases, the tags are of better qual-

ity and help the models choose correct alignments. This
effect is accentuated at higher values of α because the tag
translation probabilities are trusted more. Table 2 shows the
effect of varying α from 0.1 to 1.5 for different tag models.

TrainSet Models
M4T1 M4T2 M4Thmm M4T4 M4T4r

160k 37.6 31.2 27.0 24.9 20.7
M1 M2 HMM M4 M4r

B160k 41.0 34.4 28.7 25.9 22.2
B320k 40.2 33.1 27.8 25.0 21.1
B700k 39.2 32.1 26.5 23.7 19.9

Table 1. Alignment-tag Model trained on 160k sentences.
Spanish is used for both g and s. α = 0.1. Rows B160k,
B320k, and B700k show the baseline performance with
160k, 320k, and 700k training sets resp.

α M4T1 M4T2 M4Thmm M4T4
0.1 37.6 31.2 27.0 24.9
0.3 34.7 29.5 26.1 24.5
0.5 33.7 28.9 26.2 25.1
0.8 33.9 30.0 28.2 26.4
1.5 36.6 33.2 32.0 31.3

Table 2. %AER at different α values. Spanish is used for
both g and s. The training set size is 160k.

So far we have used Spanish as the tag language which
we align to French and English. It is interesting to look at
what effect using different languages as tags would have
on alignment performance. Table 3 shows that English,
Spanish, and French seem to help the most when used as
tags, compared to German and Finnish. This is consistent
with the reported performance of various translation sys-
tems on different language pairs. For example, in a re-
cent machine translation shared task, Spanish-English and
French-English translation were the highest scoring [12].
This suggests that the reason for the improvement seen is
owing to the alignment accuracy for these languages rather
than any inherent property of the languages themselves. In
other words, we would expect similar improvements if we
were able to align, say German to English, as accurately as
Spanish to English.

We also observe that single language tags (with the no-
table exception of Finnish) help decrease AER the most.
For example, (g = English, s = English) and (g = Spanish,
s = Spanish) tags rank highest. We were surprised that (s =
English, g = French) tags (i.e., English is used to tag French
(e), and French is used to tag English (f)) were among the
worst of the combinations shown. Note, also, that the M4T4
AER for the last three rows in table 3 is worse than the cor-
responding baseline.



M4T1 M4T2 M4Thmm M4T4
EN-EN 37.4 31.2 27.1 24.8
ES-ES 37.6 31.2 27.0 24.9
FR-FR 37.9 30.1 26.9 25.8
ES-EN 40.2 33.2 28.4 25.7
ES-DE 39.7 33.2 28.6 26.2
FI-FI 39.3 33.5 28.8 26.3
EN-FR 39.1 32.9 27.8 26.3

Table 3. Tag language effect comparison using 160k sen-
tences and α = 0.1. Five languages are used, English (EN),
Spanish (ES), French (FR), Finnish (FI), and German (DE).
ES-DE, for example, means Spanish is used for g and Ger-
man for s.

6. CONCLUSION
We have presented a statistical word alignment model that
exploits information from parallel translations in more than
two languages. We show a 7% decrease in alignment error
rate relative to a state of the art alignment algorithm. Our
model is a simple and efficient extension of the IBM and
HMM models. The model makes a strong assumption of in-
dependence between words and their alignment-tags. While
the effect of this assumption on alignment quality is not
clear, a possible improvement of the algorithm might come
from modeling the correlation between words and their tags.
The challenge, however, will remain to do so efficiently to
be able to scale to today’s increasingly large corpora.

Also, given our two-step word alignment approach, a
natural extension is an iterative procedure whereby after
producing improved word alignments using the alignment-
tag model we go back and generate new tags and new word
alignments.

We believe the alignment-tag model can be a good start-
ing point for more sophisticated multilingual alignment mod-
els, and ultimately full translation models. Most of the cur-
rent statistical translation engines are based on generating
word alignments as an intermediary step for learning higher-
level translation units (e.g. phrases, trees, etc). An impor-
tant future direction of research is to investigate whether
our gains in multilingual alignment quality carry over and
improve learning of phrase translation probabilities, for ex-
ample. We should also note that multilingual information
might help at different stages in a translation system. In [2],
it was shown to help in the decoding stage. We have shown
it to help improve word alignments and we think it can also
help in the selection of better candidate phrases compared
to a bilingual only system.
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