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ABSTRACT

It is important to produce automatic speech recognition (ASR)
systems that use as few computational and memory resources
as possible, especially in low-memory/low-power environments
such as for personal digital assistants. One way to achieve this
is through parameter quantization. In this work, we compare
a variety of novel subvector clustering procedures for ASR sys-
tem parameter quantization. Specifically, we look at systematic
data-driven subvector selection techniques based on entropy mini-
mization, and compare performance on a 150-word isolated word
speech recognition task. While the optimal entropy-minimizing
quantization methods are intractable, we show that although sev-
eral of our heuristic techniques are elaborate in their attempt to
approximate the optimal clustering, a simple scalar quantization
scheme using separate codebooks performs remarkably well.

1. INTRODUCTION

For certain applications, automatic speech recognition (ASR)
will undoubtedly become the dominant human-computer interface
methodology. For example, whenever hands are occupied (e.g.,
while driving), or where hand-based interfaces are bulky (using
personal digital assistances (PDAs) or cell phones), ASR ulti-
mately will succeed. Indeed, ASR is increasingly used on hand-
held devices [8] — some PDA-based ASR systems are starting to
appear commercially such as the IBM personal speech assistant
[3] and the Microsoft MiPad [5] (others are listed in [8]).

Compared to their wired brethren, these portable computing
devices invariably have limited computational and memory re-
sources and strict power consumption constraints. Therefore, as
more functionality is pushed into and better performance is de-
manded of portable ASR systems, it becomes crucial to investi-
gate power saving techniques. Several approaches can achieve this
goal such as voltage modulation, computation reduction, optimiza-
tion for special applications (small vocabulary recognition), mod-
ified decoding algorithms, and low-memory consumption. The
last approach addresses the problem of limited storage (ASR sys-
tems use a significant amount of memory to store parameters, typ-
ically means and variances of multivariate Gaussian distributions
or vector-quantized codebooks), the higher power consumption as-
sociated with higher memory usage and processor memory traffic
[11], and computation [10].

A simple yet effective way to reduce the required resources
with little effect on performance is to use fewer bits per parameter.
This is done by further quantizing numerical representations well
below the typically 32 or 64 bits per parameter used with the IEEE
floating point standard. In the past, several techniques have been
used to achieve such quantization. Scalar quantization [12] jointly
clusters the individual elements of parameter vectors (means and
diagonal covariances) in order to achieve lower memory require-
ments. Moreover, subvector clustering and quantization has been
applied to this problem [10]. In most cases, however, the choice of
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the subvectors uses knowledge only of the type of features used;
for example clustering MFCC’s as one subvector, the first deriva-
tives as a second subvector, or grouping each MFCC with its 1st
and 2nd derivatives. In [2], 2-dimensional subvectors are formed
using a greedy algorithm that chooses pairs that are most strongly
correlated.

In this paper, we evaluate and compare a variety of novel meth-
ods for sub-vector quantization of parameters of continuous den-
sity hidden Markov model (HMM) ASR systems. Specifically, we
look at systematic data-driven vector clustering techniques based
on entropy minimization (equivalently mutual information maxi-
mization), and compare their performance on a 150-word isolated
word speech recognition task [9]. While the optimal entropy-
minimizing quantization method is intractable, we show that al-
though several of our heuristic techniques are elaborate in their
attempt to approximate the optimal clustering, simple scalar quan-
tization using separate codebooks per parameter performs surpris-
ingly well.

In section 2, we describe our quantization algorithms and the
subvector quantization techniques. Section 3 describes the speech
corpus used and the experimental setup. In section 4 we show
the memory-performance tradeoff results of our experiments. Sec-
tion 5 discusses the results and concludes.

2. CLUSTERING ALGORITHMS

In the general problem of sub-vector quantization, we are given
N vectors v(i), i = 1, . . . , N each of dimension D, which are
to be quantized in some way. In this work, the N v(i)s con-
sist of the N means or N diagonal covariance matrices in a
Gaussian-mixture HMM-based ASR system.1 In sub-vector quan-
tization, one decides upon M subsets {Cj}

M
j=1 of the index set

S
∆
= {1, 2, . . . , D}, where Cj ⊆ S and where Cj ∩ Cm = ∅ for

all j 6= m and
⋃

j
Cj = S. For each of these sub-vectors, there

are K code words. This means that the goal is to find the functions

fCj (v
(i)
Cj

) = v̄k
Cj

0 ≤ j ≤ M, 1 ≤ k ≤ K, ∀i

where v
(i)
Cj

is a partition of the vector v(i) corresponding to the ele-

ments within Cj , and where v̄k
Cj

is the kth code word for that par-
tition. Note that if |Cj | = 1 ∀j, then this corresponds to element-
wise scalar quantization, and if |Cj | = D (implying that M = 1),
then this corresponds to full vector quantization. Anything in be-
tween, we will refer to as subvector quantization. In this general
scheme, any vector element may be clustered with any set of other
vector elements. The overall goal is to find the number of clus-
ters M , the clusters themselves {Cj}

M
j=1 satisfying the above, the

code-book size K (assumed to be the same for each cluster), and
the quantization function {fCj (·)}

M
j=1. The above quantities need

to be found such that both the total memory and computation re-
quired is minimized, and also such that the word error rate (WER)

1In this work, we always quantize means and variances separately.



increase (relative to a baseline without quantization) is at a mini-
mum. Because these two minimization criteria are independently
optimizable, we report results as two-dimensional plots showing
WER vs. total space required (equivalently number of bits per pa-
rameter). Plots which are both lower and to the left are preferable.

We further distinguish between two quantization styles, dis-
joint vs. joint quantization. Disjoint quantization is described
above. With joint quantization, different clusters are quantized to-
gether using the same code book, meaning that we form the L sets
{C`}

L
`=1 defining the set of sets C` ⊆ {C1, C2, . . . , CM} such that

C` ∩ Cn = ∅ and
⋃

`
C` = {C1, C2, . . . , CM}. In this case, the

goal is to find the memory-size and WER minimizing functions

fC`
(v

(i)
Cj

)) = v̄k
C`

∀Cj ∈ C`, 1 ≤ k ≤ K, ∀i

such that |Ci| = |Cj |, ∀Ci, Cj ∈ C` (i.e., clusters of different size
cannot be quantized together), where v̄k

C`
is the kth code word for

cluster group `.
From the above, we see that there are broadly two separate

issues to solve. The first is how to select the number M and set
of subvectors {Cj}

M
j=1, what we call the clustering problem. The

second issue is how to perform the quantization once the clustering
has been chosen. In this paper, we only address the first issue. This
is because in a preliminary study, we investigated several quanti-
zation procedures including LBG [7], LVQ [6] and the K-means
algorithm. We found that the choice of the quantization algorithm
has little effect on the final WER. Therefore, all of our sub-vector
clustering experiments use a simple hierarchical quantization algo-
rithm similar to LBG meaning that code words are iteratively split
and adjusted to minimize distortion (Euclidian squared distance).

2.1. Vector, scalar, and composed quantization

Vector and scalar quantization are defined in the previous section.
We also define a method we refer to as composed quantization,
where we first quantize the data vectors using vector quantization,
then quantize the scalars of the quantized vectors using joint scalar
quantization.

In all our experiments, we compute memory usage as fol-
lows: we denote the vector quantization resolution level by qvec
and scalar quantization level by qsca then the storage needed for
vector quantization is 2× (qvec×N +2qvec ×D×32) bits, where
the factor 2 is due to the quantization of both the means and vari-
ances. The first term in the sum corresponds to the storage required
for the indices to the quantized data. The second term corresponds
to the size of the code book. We assume 32 bits are used for un-
quantized scalars. For joint scalar quantization, the memory usage
is 2×(qsca×N×D+2qsca×32) bits. For disjoint scalar quantiza-
tion, the memory usage is 2×(qsca×N×D+2qsca×D×32) bits.
For composed quantization, 2× (qvec ×N + 2qvec ×D× qscal +
2qscal × 32) bits are required. Note that the table size term grows
exponentially with the number of quantization bits.

2.2. Subvector quantization

Supposing that v(i) is a sample from a random variable V drawn
from some distribution p(v), the best quantization (in terms of
number of bits per parameter) we can hope to achieve without any
penalty is given by H(V )/D = H(V1, V2, . . . , VD)/D where
H(·) is the entropy function. Moreover, assuming sufficient sam-
ples v(i) (i.e., that N is large), it can be shown by the law of large
numbers that vector quantization (i.e., M = 1) is optimal in that
it will minimize the overall distortion between the original and
the quantized data. There are two problems, however, with this
scheme in practice. First, there is rarely enough data given the

high dimensionality D of the parameter vectors. Second, the cost
of storing the code book tables becomes prohibitive as the number
of bits per quantized vector qvec increases. Subvector quantization,
therefore, is an attempt to achieve better than scalar quantization
while avoiding the problems mentioned above.

Fixing a particular clustering {Cj}
M
j=1, the fewest number of

bits per parameter possible under the ideal sub-vector quantization
scheme is given by 1

M

∑M

j=1 H(VCj ). We expect that below this
amount WER would begin to increase dramatically. For example,
with scalar quantization we would not hope to quantize without er-
ror at anything less than

∑
j
H(Vj)/D bits per parameter. More-

over, using entropic inequalities [4], it can be shown that:

H(V )/D ≤
1

D

M∑

j=1

H(VCj ) ≤
1

D

D∑

j=1

H(Vj)

Therefore, an inherent tradeoff exists: we prefer large clusters up
to the point where the limited amount of data available to perform
the multi-dimensional sub-vector quantization and the size of the
tables becomes an inhibiting factor.

An additional problem is that designing the best clustering
{Cj}

M
j=1 is a hopelessly intractable problem. Even in the case

where |Cj | = 2, finding the optimal clustering has exponen-
tial cost. One existing approach therefore is to manually di-
vide the parameters into subsets based on prior knowledge of the
vector elements[10]: for example, it might be argued intuitively
that the joint entropies H(MFCCs), H(deltas), H(double deltas),
H(log energy) will be small. In [2], a greedy algorithm is used to
find M = 13 clusters that have low entropy.2

In the case where Cj = 2 ∀j, minimizing entropy is equiva-
lent to maximizing pair-wise mutual information, as seen using [4]
the formula H(Vm, Vn) = H(Vm)+H(Vn)− I(Vm; Vn), where
I(Vm; Vn) is the mutual information between Vm and Vn. More-
over, standard linear correlation is an approximation to mutual in-
formation [4]. Therefore, the more jointly correlated the compo-
nents of a subvector, the smaller the entropy will be, meaning the
distortion between the quantized and unquantized subvector will
be minimized.

We can view the D-dimensional parameters as a D-node fully
connected weighted undirected graph, where the weight of each
edge denotes the mutual information (or correlation) between the
corresponding nodes. Clustering therefore can be seen as find-
ing a graph M -partition, where nodes within each partition are as
correlated as possible, and nodes between different partitions are
relatively independent.

Based on the above, in this paper we explore various novel
data-driven clustering techniques. The basic clustering algorithms
are described below:

2.2.1. Greedy-n Pair

In this first algorithm, which we call Greedy-n Pair (where n is
a parameter), we perform a tree search with branching factor n.
The nodes of the tree are pairs of vector elements (so that |Cj | =
2 ∀j, and M = D/2) with the restriction that no two nodes on
the path from the root of the tree to a leaf may contain the same
element. The n children of a node are the top n ranked pairs in
terms of mutual information between the two corresponding vector
elements. Given the discussion in the previous section, the goal is
to find the path from root to leaf that has the maximum sum of
all the mutual information values of the pairs along the path. This
algorithm is summarized as follows:

2Actually, they [2] find cluster pairs that are highly correlated, an ap-
proximation to low entropy as shown in the next paragraph.



1. Sort the nodes in decreasing weight
2. Recursively, find the node that maximizes the sum of its

weight and the weight of the best path below it.
3. Assign each node in the path with the maximum weight to a

2-d subvector.

2.2.2. Greedy-1 Triplet

The above algorithm can be generalized to the case where the tree-
nodes can have more than two elements (|Cj | = 3), a technique
we call Greedy-1 Triplet. In the procedure we implemented, the
measure of mutual dependency within elements of a cluster is the
average pair-wise mutual information between all pair of scalar
elements. Other than the different size of the clusters, the selection
algorithm is the same as Greedy-1 pair.

2.2.3. Maximum clique quantization

The previous schemes require a uniform subvector size (i.e.,
|Ci| = |Cj | ∀i 6= j) even though smaller or larger subvectors
might exhibit a higher degree of correlation (and thereby better
overall quantization). In our maximum-clique scheme, we adopt
a structural approach in which the dependency graph described in
Section 2.2 is pruned so that only a percentage of the edges with
weights above some threshold remain. A maximum clique find-
ing algorithm is then applied to the sparse graph. When there are
two overlapping cliques, the one with the maximum average mu-
tual information is chosen and its elements are removed from the
graph.

2.2.4. Joint quantization

The discussion above assumes disjoint quantization, where each
subvector is clustered using a separate code book. The alternate
scheme is to quantize subvectors of the same size jointly, the mo-
tivation being that a better clustering might be achieved given that
more data is available per subvector and that different subvectors
could have overlapping value ranges. To ensure this is the case,
we normalize all vector elements to have the same mean and vari-
ance, apply the joint quantization algorithm, and then convert the
quantized vectors back to vectors with the original means and vari-
ances. This proved to work better than joint quantization without
normalization

3. DATABASE

In all experiments reported in this work, we use NYNEX
PHONEBOOK, a phonetically-rich, isolated-word, telephone-
speech database[9]. Speech data is represented using 12 MFCCs
plus c0 and their deltas resulting in a d = 26 element feature vec-
tor every 10ms. The training and test sets are as defined in [1].
Test words do not occur in the training vocabulary, so test word
models are constructed using phone models learned during train-
ing. Strictly left-to-right transition matrices were used except for
an optional beginning and ending silence model. Four states per
phone were used leading to a total of 165 hidden states, using the
dictionary contained with the PHONEBOOK distribution.

In our results, we quantize only the means and variances of
Gaussian distributions which are used to model the state output
probabilities in a continuous density HMM. Mixture coefficients
are left unquantized. Quantizing them neither achieves significant
memory savings since they account for less than 5% of the number
of means or variances nor does such an operation affect WER in
a significant way. There are a total of 1900 mean and variance
vectors, leading to 1900× 26× 2 = 98800 32-bit scalars for both
the means and variances.

4. RESULTS

In this section, we evaluate the various clustering methods that
were described in previous sections.

4.1. Vector, composed, scalar, and disjoint scalar

Figure 1 shows a comparison between vector, composed, scalar,
and disjoint scalar clustering methods. The single cross at the
right of the plot shows baseline performance, with no quantization
(meaning 32-bits per parameter, and a memory cost that does not
require a table). As can be seen, the scalar quantization schemes
(both joint and disjoint) perform significantly better than either the
vector or the composed schemes. Scalar quantization uses only
15.7% of the memory of the baseline, but has a 2.55% WER (only
a 5.0% relative increase over the baseline). Composed quantiza-
tion alleviates the table size problem which penalizes vector quan-
tization, but still does not beat scalar quantization.

It is also worth noting that although disjoint scalar quantiza-
tion might seem to require more memory than joint quantization,
disjoint achieve a WER of about 2.65% with just 3 bits per pa-
rameter (9.8% of the baseline memory), and 2.46% with just 4 bits
(13.3% of the baseline memory).
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Fig. 1. Comparison between vector, composed, joint scalar and
disjoint scalar quantization.

The remaining results we report are all presented together in
Figure 2.

The top-left of the figure shows a comparison of Greedy-1
pair, disjoint scalar, and a random procedure (cluster pairs are cho-
sen randomly). From the results, we see that the 2-dimensional
subvector selected by Greedy-1 algorithm does do better than those
selected randomly, although it does not outperform disjoint scalar
quantization probably because Greedy-1 pair is only a heuristic.
The plot does show that there appears to be an advantage in clus-
tering correlated elements together, as is expected.

The top-middle of Figure 2 compares the Greedy-N pair pro-
cedure, with N = 1 and N = 6. For N ∈ {3, 4, 5, 6} the clus-
tering results were exactly the same, which is why we report only
these two cases. As can be seen, there does not seem to be a clear
advantage of Greedy-6 pair over Greedy-1 pair. In fact the result-
ing entropy sums were almost identical. While it might be that
Greedy-N pair for N > 6 would achieve a better clustering, the
computational cost quickly becomes prohibitive.

The top-right of the figure shows a comparison between
Greedy-1 pair computed using simple linear correlation and an ap-
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Fig. 2. Various comparison between clustering schemes.

proximation to true mutual-information. It is safe to say correla-
tion is sufficient, probably because the amount of data (N = 1900)
is not large enough to produce a reliable estimate of more accurate
mutual-information approximations.

The bottom-left of Figure 2 compares disjoint scalar, greedy-1
pair, and greedy-1 triplet. The results show that using this heuris-
tic, clusters of size three |Cj | = 3 do not perform better than sim-
ple disjoint scalar quantization, again presumably either because
of data sparsity issues (small N ) or clustering approximations.

The bottom-middle of the figure compares different thresholds
for the maximum clique strategy. The thresholds we choose in this
experiment is 4% and 8%, meaning we keep either 4% or 8% of the
highest weight edges in the graph. Once again, the performance is
no better than disjoint scalar quantization. In further experiments
(not shown in the plot), we find that differences are negligible with
a threshold ranging between 4% and 15%, and that quantization
gets worse when the threshold is increased further.

Lastly, in the bottom-right of the figure, we compare joint vs.
disjoint quantization for two different clustering methods (scalar as
in Figure 1, and greedy-1 pair). As can be seen, both disjoint scalar
quantization does better than joint scalar and disjoint greedy-1 pair
quantization does better than joint greedy-1 pair. This leads us to
the conclusion that the disjoint quantization methods (where each
cluster has its own code book) are advantageous, even given po-
tential data-sparsity issues.

5. DISCUSSION

The results above evaluate a number of novel methods for produc-
ing subvector-based parameter quantizations in Gaussian-mixture
HMM-based ASR systems. We find that the disjoint scalar method
is the best overall methodology, beating the much more elaborate
heuristics that use, for example, mutual information, correlation
and maximum clique discovery. In future work, we plan to inves-
tigate additional clustering and quantization schemes in order to
improve results further.
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