
Concurrent Real-Time Music in C++

David P. Anderson yz

<anderson@snow.berkeley.edu>

Je� Bilmes y

<bilmes@icsi.berkeley.edu>

yInternational Computer Science Institute

1947 Center Street

Berkeley, CA 94704

zComputer Science Division, EECS Department

University of California at Berkeley

Berkeley, CA 94720

Abstract

MOOD is a C++-based programming system for algorithmic and interactive
music generation. MOOD uses multiple concurrent processes to generate di�er-
ent aspects of musical structure (pitches, rhythm, dynamic variation, etc.). It
is composed of three layers. Layer one supplies deadline-scheduled lightweight
processes and real-time event generation. Layer two allows processes to be col-
lected into hierarchical group structures, with associated \virtual time systems"
and nested musical transformations. Layer three provides pitches, scales, notes,
rhythm speci�cation, and higher-level musical abstractions. MOOD derives sev-
eral bene�ts from C++ features such as inheritance and operator overloading:
1) a simple and versatile syntax for music representation; 2) a clean, layered
structure for the internal scheduling mechanisms; 3) easy factorization of the
machine-dependent parts (MOOD now runs on Sun 3 and 4 workstations under
UNIX, and on the Macintosh).

1 Introduction

MOOD (Musical Object-Oriented Dialect) is a programming system for note-level com-
puter music (e.g., computer control of MIDI [Int89] synthesizers). Unlike standard music
sequencer programs that represent music as lists of note data structures, in MOOD the
music is represented by the code itself; hence MOOD can specify musical algorithms as well
as scores. We intend MOOD to support a variety of musical activities, including 1) algo-
rithmic composition; 2) interactive performance environments, and 3) programmed score
interpretation.

We implemented MOOD as a set of C++ [ES90] classes. As discussed by Pope [Pop89],
object-oriented programming languages are useful for computer music since they provide
design techniques such as composition, re�nement, factorization, and abstraction. Our
additional reasons for using C++ include:

1) Familiarity: Programmers familiar with C++ can immediately use MOOD. Further-
more, MOOD can bene�t from C++ development activities in other areas, such as
user-interface toolkits.

2) Clean syntax: The operator-overloading features of C++ allow us to provide concise
and intuitive syntax for common musical structures.

3) Speed: Optimizing compilers are available for C++, and there is no built in garbage
collection. These properties improve timing accuracy.

4) Portability: C++ runs on a variety of machines and operating systems, and makes it
easy to encapsulate system dependencies.

5) Extensibility: Inheritance make it possible for programmers to extend and customize
the features of MOOD for particular musical styles or applications.

MOOD is composed of three layers. Layer one supplies deadline-scheduled lightweight
processes and real-time event generation. Layer two supplies hierarchical \virtual time
systems" that allow the nesting of musical transformations. Layer three provides pitches,
notes, scales, rhythms, and higher-level musical abstractions. Figure 1 shows the MOOD
class hierarchy and its division into layers.

2 Layer One: Basics

Layer one provides the rest of MOOD with lightweight processes, accurately-timed event
performance, and other low-level features. MOOD uses the scheduling model of FOR-
MULA [AK90].

2.1 Real-Time Processes

MOOD uses several specialized types of processes. The PROCESS class abstracts the features
common to these types. These include a stack, an SP save slot, and member functions for
context switching and stack initialization. The RT PROCESS class also inherits SCHED REQ,
adding the necessary state for real-time scheduling (see below). An ARGS object stores the
arguments (and their number and types) to be passed to the initial procedure executed by
the process. A process might be created as follows:

ARGS args;

PROCESS *p;

args << 5 << 3.5;

// the new process will execute foo(5, 3.5)

p = new RT_PROCESS(foo, args);

2.2 Process Scheduling

Real-time scheduling is encapsulated in the classes SCHEDULER and SCHED REQ. SCHED REQ

abstracts the notion of \schedulable entity", with virtual member functions run() and
preempt(). For example, the implementation of run() in RT PROCESS simply switches to
the process. A SCHED REQ also includes TIME members deadline, time position, maxdel,
and mindel. time position is the real time for which events (such as notes) are currently
being computed by the entity. time position may be greater than the current real time
but if it exceeds it by more than maxdel (i.e. time position > currentSV T +maxdel), the
entity is temporarily put to sleep. deadline is the entity's scheduling priority, and is equal
to time position - mindel; thus mindel can be used to prioritize processes (such as input
handlers) with similar time positions.

Figure 1: The MOOD class hierarchy and layers.

Earliest-deadline-�rst CPU scheduling is used: a SCHED REQ object runs only when it
has the earliest deadline, and runs until it changes its time position and deadline using:1

SCHED_REQ::set_time_position(TIME);

After an RT PROCESS is created and initialized, it can be made runnable using:

SCHEDULER::make_runnable(SCHED_REQ*);

Scheduling is preemptive: if a process with an earlier deadline than the current process P
is made runnable (by an interrupt handler or by P itself) it preempts P.

Real time is expressed in units of system virtual time (SVT). The number of units of
SVT per clock period can be varied slightly to phase-lock MOOD to an external timing
source. The classes TIME and TEMPO represent times (absolute or relative) and time scaling
factors respectively. On the MC68020, TIME and TEMPO objects are 64 and 32 bit �xed
point integers; on the SPARC, they are 64 and 32 bit oating point values. C++'s operator
overloading facilities make the implementations of TIME and TEMPO transparent to users of
the classes.

When possible, events are computed before they are performed (i.e., the deadline of
the currently running process may exceed the current SVT). The member variable maxdel

determines the maximum amount by which an RT PROCESS may run ahead of real time,
and thus limits its response latency for asynchronous I/O events. system mindel, a TIME

member of SCHEDULER, is used to keep processes from falling too far behind schedule. If the
following condition holds:

earliest deadline � currentSV T � system mindel

then SVT is not advanced.

2.3 Event Generation

To improve timing accuracy, MOOD separates the computation of a note and its parameters
(pitch, volume, etc.) from the action that causes the note to sound. This is especially useful
when using MOOD with a DSP system as a synthesizer. The class TIMER encapsulates timed
performance of output actions, via

TIMER::insert_request(TIMER_REQ*).

TIMER REQ is an abstract class; its derived classes de�ne \action routines" and their pa-
rameters. A Process plays notes at a speci�c time by: 1) advancing its time position, 2)
computing the notes to be performed at that time, and 3) calling TIMER to schedule the
playing of the notes. Hence a process is usually computing notes that will be sounded at a
later time.

TIMER uses a separate timer process for event performance. On each clock interrupt,
TIMER checks if any events are pending and if so makes the timer process runnable. The
timer process checks if SVT has reached or passed an event's time, calling the appropriate
routine if it has. The accuracy of event timing is limited by the clock period.

1We use the scope resolution operator here to show which class contains the member function.

2.4 Asynchronous I/O

MOOD provides asynchronous I/O, i.e., a facility for a process to do a blocking read from
a descriptor without causing the whole UNIX process to block. This is encapsulated in the
IO class, whose constructor takes a �le descriptor and which provides read() and write()

operations, implemented using SIGIO and select(). A ag indicates whether read() and
write() operations should return when 1) some I/O has been done or 2) the entire request
has been done.

2.5 UNIX Implementation

In the UNIX implementation of MOOD, the timer and I/O interrupts are signals. The signal
handlers may wake up processes (e.g., the timer process). If one of these processes has a
deadline before the current process, preemption is needed. This is done by changing sc pc

in the handler's struct sigcontext to the address of an assembly routine preempt. This
routine saves the complete context of the interrupted process and does a (non-preemptive)
context switch to the process with the earliest deadline.

MOOD uses virtual interrupt masking for critical sections. This technique uses mask
level and request variables. If a signal handler �nds that the mask level is nonzero, it sets a bit
in the request word and returns. mask ints() increments the mask level. unmask ints()

decrements the mask level and, if it is zero and the request word is nonzero, calls routines
that do the work of the clock or I/O signal handlers.

UNIX is not a real time operating system, and there are noticeable timing delays when
there is other system activity. On the SPARCStation, we have adapted MOOD to use a
MIDI device driver that keeps an output queue in the kernel, and performs events at the
hardware interrupt level. This greatly increases the accuracy and resolution of event timing.

3 Layer Two: Virtual Time

Layer one allows processes to schedule events in real time. Layer two extends this by
supporting virtual time systems: coordinate systems for time that can run faster or slower
than real time, modeling the way a musician varies tempo during a performance. Each
virtual time system is represented by an object of class VTS, whose state includes inner and
outer time positions (generalizations of layer one's deadlines). An object of class FUNCTION
de�nes the mapping (when inner time is incremented by x, the FUNCTION \deforms" x and
the result is added to the outer time).

FUNCTION is an abstract class. Simple derived classes multiply x by a constant, or
call a function to deform x. TD PROCESS deforms x by doing a coroutine switch to a time

deformation process. This process de�nes a \tempo function" by calling primitives

// linear tempo change

td_seg(TIME dt, TEMPO start, TEMPO end);

// pause

td_pause(TIME dt);

whose implementations handle the context-switching details. Finally, COMPOUND FUNCTION

encapsulates a list of FUNCTION objects, which are called in order when the
COMPOUND FUNCTION object is called.

Figure 2: Examples of a single virtual-time process (a) and a group of three such processes
(b). Attached to each VTS are two FUNCTIONs: a \time deformation" that controls its
tempo, and a \modi�er" that is applied to any notes played by descendant processes.

Processes can be organized into a hierarchy of groups, each with their own virtual time
system (see Figure 2). A top-level group is represented to the SCHEDULER as a VT SCHED REQ

object, which inherits from SCHED REQ. This VT SCHED REQ is linked to a VTS whose outer
time corresponds to real time. Each VTS represents (and contains pointers to) either a
group of VTSs or a single VT PROCESS. A FUNCTION attached to a VTS a�ects all of its
descendants.

A VT PROCESS can schedule events using VT PROCESS::timer request(TIMER REQ);

This stores the (real-time) time position of the caller's topmost VTS ancestor in the
TIMER REQ, then calls TIMER::timer request(). A VT PROCESS can change its time po-
sition using VT PROCESS::time advance(TIME dt). Timing is expressed in the inner time
of its VTS. The mapping to real time is the composition of all the FUNCTIONS along the
branch of the VT PROCESS.

When a VT SCHED REQ is executed, it does a context switch to its \earliest" VT PROCESS

descendant, whose time position determines the time position of the VT SCHED REQ and
therefore its deadline. For e�ciency, VTS groups are time-ordered lists, and each VTS
stores a pointer to its earliest VT PROCESS descendant.

Each VTS also includes a note modi�er FUNCTION used by layer three (see below).
Finally, layer two allows a VT PROCESS to schedule future actions at times other than its
current time position. These are stored in a \future action queue", which is traversed by
VT PROCESS::time advance. This makes it convenient to schedule key-up commands whose
timing may be intermixed with future key-down commands.

4 Layer Three: Music

Layer three of MOOD provides music-speci�c features. The design uses abstract classes
and inheritance to provide an \open framework" in which new features can be added easily.

4.1 Note Playing Processes

NP PROCESS (note-playing process) adds musical features to VT PROCESS. A NP PROCESS

contains a NOTE MAKER and a NOTE PLAYER object as instance variables. Objects
subclassed from GENERATOR, representing notes or groups of notes, are sent to
a NOTE MAKER using NOTE MAKER::operator<(GENERATOR&) for successive events and
NOTE MAKER::operator<=(GENERATOR&) for simultaneous events. The NOTE MAKER will then
ask the GENERATOR to supply it with event information by calling the virtual member func-
tion GENERATOR::apply(NOTE MAKER&);. Subclasses of GENERATOR rede�ne the apply()

routine to send their component objects back to the NOTE MAKER. Using this method, sub-
classes of GENERATOR may produce a variety of musical structures.

A NOTE object represents a single note. It adds duration, volume, and duty (the fraction
of duration during which the note sounds) to PITCH objects. A NOTE MAKER object has
speci�c versions of operator<() for PITCH objects, subclasses of NOTE objects, and ints.
These routines can take a PITCH or a partially constructed NOTE (e.g., lacking volume)
as input, and produce a fully constructed NOTE. They do this in the standard version of
NOTE MAKER by applying the note modi�er FUNCTIONs of the ancestor VTSs, in order. For
example, these FUNCTIONs might modify the volume of notes, supply a duration, or change
the duty.

A NOTE PLAYER object takes complete NOTES as input and handles them in a subclass-
dependent way. The standard NOTE PLAYER class plays the note via MIDI, using TIMER

to schedule the output actions (usually note on and o� MIDI events) and SCHEDULER to
advance its time by the duration of the note. Other subclasses write the note to a �le, or
send it to another process.

The NP PROCESS typically computes a sequence of PITCHs and uses its NOTE MAKER to
convert these to NOTEs which then feeds them to its NOTE PLAYER. Rhythmic �gures are
obtained by note modi�er functions that use a SG PROCESS (sequence generator process)
set up by the NP PROCESS. A NP PROCESS may access its NOTE MAKER using the symbol NM.
Assuming C, D, E, and F are PITCH objects, a succession of notes may be played as:

NM < C < D < E < F;

4.2 Pitches, Modes, and Temperament

PITCH objects, representing frequencies, maintain a pitch number which can be used as a
MIDI note number or as a value to generate a frequency. PITCH objects also contain, as
member variables, MODE and TEMPERAMENT objects. The pitch number of a PITCH object
can change in either pitch steps (called pitch step deltas) or mode steps (called mode step
deltas). When a PITCH changes by i pitch steps, the frequency the PITCH represents usually
changes by i half-steps in the chromatic scale. When a PITCH object changes in mode steps,
the pitch number must change by an appropriate number of pitch steps. A MODE object
acts as a function with state that maps from mode step deltas to pitch step deltas. The
state is simply the current position in the MODE. Therefore, when a PITCH object changes
by n mode steps, it noti�es its MODE object who adjusts itself by n mode positions and

supplies a pitch step delta back to the PITCH object. Prede�ned global MODE objects include
Ionian through Locrian, and, although they are not modes in the same sense, Chromatic,
Major, Minor, HarmonicMinor, MelodicMinor, LydianMinor, Blues, Gypsy, Jewish, etc.
The \..." mechanism is used in MODE constructors. The �rst argument gives the number
of mode steps, and the following arguments supply the steps themselves. For example:

const MODE Chromatic(12,1,1,1,1,1,1,1,1,1,1,1,1);

const MODE Ionian(7,2,2,1,2,2,2,1);

const MODE HarmonicMinor(7,2,1,2,2,1,3,1);

const MODE Gypsy(7,1,3,1,2,1,3,1);

The TEMPERAMENT of a pitch may be used to generate micro-tonal and non-equal tem-
pered music. When constructing PITCH objects with non-default TEMPERAMENTs, the initial-
izer PITCH object can act as the pitch base. The pitch base is the frequency that corresponds
to the �rst scale value the TEMPERAMENT de�nes. One may optionally provide an o�set into
the temperament that speci�es where in the scale the constructed pitch should be placed.
For example, if C and D are PITCH instances:

// p uses the C natural Major scale

PITCH p(C,PureMajor);

// q uses the D natural Major scale

PITCH q(D,PureMajor);

// r uses a Natural Major scale whose second frequency is C.

// Note: The frequency of one pitch step less than r is not the

// same as the frequency of B.

PITCH r(C,PureMajor,1);

Thus, the constructed PITCH object along with its TEMPERAMENT de�nes a mapping from
integer pitch numbers to frequencies. When a PITCH is used with an FTEMPERAMENT, the
FTEMPERAMENT may be used to calculate the frequency in Hertz of the PITCH. This will
be useful for interfacing MOOD with a DSP system. Global FTEMPERAMENT objects are
pre-de�ned including EqualTempered, PureMajor, PureMinor, and MeanTone. The \..."
mechanism is used in FTEMPERAMENT constructors also. The �rst argument gives the units
in divisions per octave (1200 corresponds to cents), the second argument gives the num-
ber of frequencies per cycle, and the following arguments supply the multiplicative factors
for computing the successive frequencies. The following is an example of constructing
FTEMPERAMENT objects.

const FTEMPERAMENT EqualTempered(1200,12,100,100,100,100,

100,100,100,100,100,100,100,100);

const FTEMPERAMENT PureMajor(1200,12,70.673,133.237,111.731,

70.673,111.731,70.673,133.237,70.673,111.731,133.237,70.673,

111.731);

The default MODE for a PITCH is Chromatic, and the default TEMPERAMENT is
NullTemperament (does nothing). These defaults are implemented using C++ default
arguments in the PITCH constructors.

4.3 Musical Operators

Operations on musical structures applicable to a NOTE MAKER are abstracted by the class
OP GENERATOR (operable generator). Using C++ operators, musical structures may be
manipulated in novel ways.

4.4 Operations on PITCH objects

Abstracted by OP GENERATOR, many C++ operators are de�ned on PITCH objects. For
example, if p is a pitch, p++ increments the pitch by a mode step, p-- decreases it by
a mode step, +p returns a sharpened pitch (a pitch that is one pitch step greater), -p
returns a atted pitch, p += i increases p by i mode steps, p -= i decreases it by i mode
steps, p %= i increases in MODE steps but wraps at the octave, p <<= i increases p by
i semitones, p >>= i decreases in semitones, p[i] is i octaves above p, and p[-i] is i

octaves below. Assignment operators allow both PITCH and MODE objects to be assigned to
PITCHs (assignment of a MODE to a PITCH only changes the MODE). Relational operators are
de�ned as expected (< means less in pitch, etc.). Most binary operators are also de�ned
as expected on pitches, preserving mathematical identities where possible. Therefore, pitch
equations and expressions may be used. For example:

if (p+3 >= A[i]-1) // i is an int

NM < p+3 < p<<4;

else

NM < p-2 < p>>3;

Global pitch constants (A through G) with default MODE and TEMPERAMENT are prede�ned.
A[5] is 440Hz and C[5] is middle C. To reduce unnecessary bracket use, pitch constants C1
through B12 are also de�ned. Certain operations are not allowed on pitch constants. For
example, the construct C++ is invalid since it is an attempt to modify the constant pitch C.
C++ constant member functions make it easy to enforce this restriction.

With these constructs, we may write:

for (PITCH p = C[5]; p <= C[6]; p++)

NM < p;

which will play a chromatic scale starting at middle C, and

PITCH p(Ionian);

for (p = C[5]; n <= C[6]; p++)

NM < p;

which will play a C major scale.

4.5 SEQUENCEs, CHORDs, and MFILEs

SEQUENCE objects store an ordered sequence of OP GENERATOR objects. A SEQUENCE will send
its components to a NOTE MAKER in the order they were loaded. Similar to a NOTE MAKER,
SEQUENCE objects are loaded with SEQUENCE::operator<(OP GENERATOR&);. All of the
operators de�ned by OP GENERATOR may be applied to a SEQUENCE; the operation de�ned
will a�ect all of the SEQUENCE's components. Therefore, one may easily manipulate melodies.

Figure 3: Chords of the C Harmonic Minor Scale

SEQUENCE s;

s < C4 < F4 < G4 < D4 < C5 < -B4 < F4;

NM < s; // play the sequence

NM < s[1]; // play it an octave above.

NM < s<<1; // play it a half-step down

Similar to SEQUENCE objects, CHORD objects cause its component's events to occur when
applied to a NOTE MAKER. A CHORD object's components play simultaneously however. There-
fore, one may easily play the chords de�ned by a given mode (see �gure 3).

CHORD ch;

ch <= C5 <= -E5 <= G5 <= B5;

ch = HarmonicMinor;

// Play the chords defined by the C Harmonic Minor scale

for (int i=0;i<8;i++)

NM < ch++;

CHORD objects also de�ne operators for changing the voicing and chord inversion. Sub-
classes of CHORD provide prede�ned chords. The root of these chords are given by a PITCH

at construction time. For example, MAJ7 maj7(C4); produces a C Major 7th chord.
CHORD SEQUENCE objects are used when both operator<() and operator<=() are

needed to store a set of OP GENERATORs. MFILE objects can be used to store sequences
or chords and play them at a later time. For example:

MFILE mf("myFile");

if (mf.open()) {

PITCH p = C4;

mf.truncate();

while (p < C5)

mf < p++;

mf.close();

NM < mf; // this will reopen and play the file.

}

SEQUENCEs, CHORDs, and MFILEs thus make it relatively easy to manipulate melodies,
chord sequences, and pitches contained in �les.

4.6 Rhythm

Note durations are either associated with NOTE objects when they are constructed, or are ob-
tained by the NOTE MAKER (via a modi�er) from a SG PROCESS (sequence generator process).
The function executed by a SG PROCESS speci�es rhythmic �gures using the two macros.
B(n,d) speci�es n note durations of length 1=d (e.g., B(4,16) speci�es four sixteenth notes).

Figure 4: MOOD Score Example

F(n,d) speci�es a n=d note duration (e.g., F(1,1) is a whole note duration, F(3,8) is a
dotted eighth note duration, and F(7,16) is a double dotted quarter note).

5 Example

The following example demonstrates how MOOD may concisely represent musical �gures.
It shows how abstract musical structures may be de�ned (the de�nition of procedure void
playLine(PITCH&);), and how concrete instances of the abstraction are made (creation of
processes executing the procedure). Figure 4 shows the traditional notation.

// MOOD demonstration program.

#include "mood.h"

void seqGen() {

B(56,16); // generate 56 16th notes,

B(1,2); // and 1 half note

}

void playLine(PITCH& startPitch) {

// set up an associated sequence generator

AUX_INIT;

SET_TSG(new SG_PROCESS((PROCEDURE)seqGen, no_args));

SEQUENCE s1, s2;

SEQUENCE bar1,bar2,bar4; // bar 1 and 3 are equivalent

// load sequences with relative pitches

s1 < startPitch < startPitch+1 < startPitch+2 < startPitch;

s2 < startPitch < startPitch+2 < startPitch+1 < startPitch;

// load bar 1 through 4.

bar1 < s1++ < s1++ < s1; s1 -= 2; bar1 < s1++;

bar2 < s1; s1 -= 2; bar2 < s1++ < s2++ < s2;

bar4 < ++s1; s1 -= 2; bar4 < s1 < C4;

// send sequences to our note maker

NM < bar1 < bar2 < bar1 < bar4;

}

main() {

NP_PROCESS *p;

VT_SCHED_REQ *q;

timer.start_clock();

timer.set_tempo(2500000);

ARGS args1, args2;

// create the first process

args1 < PITCH(C5,Ionian);

p = new NP_PROCESS(std_note_maker, midi_out, (PROCEDURE) playLine, args1);

scheduler.make_runnable(q);

// create the second process

args2 < PITCH(G5,Ionian);

p = new NP_PROCESS(std_note_maker, midi_out, (PROCEDURE) playLine, args2);

scheduler.make_runnable(q);

scheduler.exit();

}

6 Current and Future Additional Work

We are currently adding facilities that will make rhythmic speci�cation in a SG PROCESS

more exible. DUR (duration) objects de�ne a NOTE duration. DUR(4) is a quarter note as
is DUR(1,4). REST objects are like DUR objects, except they de�ne a rest. DUR and REST

objects may be inserted into CADENCE objects. CADENCE objects are composed of DUR or other
CADENCE objects and they may be used to operate on sets of rhythmic �gures. Therefore,
one may write:

// add quarter and eight note to cadence

CADENCE < DUR(4) < DUR(1,8)

C++ operators are de�ned on CADENCE objects so that rhythm can be ma-
nipulated in interesting ways. For example, CADENCE::operator<<(DUR&) and
CADENCE::operator>>(DUR&) shifts the rhythmic �gures de�ned by the CADENCE either
forward or backwards in time. This is useful for musical sections that are either behind or
in front of the beat. If c1 and c2 are CADENCE objects, c1 && c2 is the intersection, c1

|| c2 is the union, and c1 ^ c2 is the mutual exclusion of the rhythmic �gures de�ned by
both cadences. CADENCE::operator!() transforms all REST (DUR) objects into DUR (REST)
objects of the same time length. CADENCE::operator() is used to de�ne CADENCE objects
relative to other CADENCE objects. This is useful for de�ning rhythmic structures commonly
seen in a Frank Zappa score. Common constant DUR objects are also pre-de�ned. For
example:

CADENCE c1,c2;

// load c1 with two quarter notes and a quarter note triplet.

c1 < DUR(4) < DUR(4) < DUR(6) < DUR(6) < DUR(6);

// load c2 with two half notes.

c2 < DUR(2) < DUR(4) < DUR(4);

c1 << DUR(1,128) // shift rhythm early in cadence

c1 >> DIR(1,128) // shift late.

SG < c1 && c2; // intersection

SG < c1 || c2; // union

CADENCE c3,c4;

c3 < DUR(6) < DUR(6) < DUR(6) < DUR(6) < DUR(6) < DUR(6);

c4 < DUR(5) < DUR(5) < DUR(5) < DUR(5) < DUR(5) ; // 5 per measure

SG < c1(2,4,c2); // return CADENCE defining 5 evenly spaced rhythmic

// figures given by c2 in the time frame between

// the 2nd and 4th component of c1

We have plans for further MOOD development. Good synthesizer management and
music output objects need to be designed so that MOODwill understand and simultaneously
use di�erent types of synthesizers and DSP systems. This will involve building subclasses
of TEMPERAMENT for speci�c synthesizers, and subclasses of NOTE PLAYER for di�erent sound
modules. This will enable, for example, the NeXT DSP or the SPARCstation audio output
device to be used together with MIDI synthesizers.

Extensions need to be made for more sophisticated algorithmic music generation. For
example, automatic harmonizer objects are planned as subclasses of OP GENERATOR. Other
subclasses of GENERATOR could be used to build musical data structures such as the TTREE
[Die88].

7 Related Work

Several computer languages for music are related to MOOD. FORMULA [AK90], based on
Forth, is a real-time language for algorithmic music composition. MOOD's multiple tasks
and scheduling policies are derived from FORMULA. MOOD provides a cleaner and more
intuitive syntax for algorithmic music speci�cation. Also, since MOOD is written in an
object oriented language, it is believed that MOOD is more easily extendible. MOOD is
also integrable into other C++ user interface packages that desire musical features. MOOD,
however, currently lacks an interactive environment which FORMULA uses extensively.

The Canon score language [Dan89] for computer music, written in LISP, emphasizes
nesting scores and operations (or transformations) on scores. Canon provides many inter-

esting transformations on scores that allow musical constructs to be de�ned and later ma-
nipulated. Like MOOD, Canon Scores are not note lists, but are themselves programs. Both
MOOD and Canon can express \complex parameterized behaviors" even though Canon is
written in a declarative language and MOOD in an imperative language. Users of MOOD
may de�ne abstract parameterized musical constructs either using inheritance or by writ-
ing a procedure. Canon does not have as concise a syntax as MOOD, nor does it support
multiple processes or abstraction through inheritance.

The NeXT Music Kit [JB89] is an Objective-C [NeX] musical interface to the NeXT
machine. It provides a large assortment of well thought out tools one needs to build se-
quencers and sound editors, has an interface to play notes on the NeXT DSP chip, and
is object-oriented and therefore extensible. The Music Kit's syntax, however, is unwieldy
(primarily due to Objective-C) and common operations on notes are not prede�ned as they
are in MOOD. Also, the Music Kit does not provide multiple processes.

8 Conclusion

MOOD provides a powerful language base for algorithmic computer music. Unlike musical
\little languages" [Lan90], MOOD provides a uniform, extensible, and familiar environment
for algorithmic music composition.

The features of C++ have contributed in many ways to the MOOD design. Inheritance
allows us to de�ne a graded set of process types, and to separate scheduling policies from
the entities being scheduled. It also provides a framework in di�erent implementations
of a given interface (e.g., NOTE MAKER, NOTE PLAYER, and TIME can be easily substituted).
The ability to overload many operators enables us to provide a rich and concise syntax for
expressing pitch structures. The availability of C++ toolkits such as Interviews [LCV87]
will facilitate the integration of MOOD with a graphical user interface.

An interactive language system (like Lisp, Forth, or Self [US87]) is often useful for
computer music, and most current C++ implementations are non-interactive. A second
inconvenience of C++ for our purposes is that one cannot add new control structures. This
precludes language features such as FORMULA's \embedded process de�nitions". The
advantages of C++, however, outweigh these disadvantages.

MOOD currently runs on the MC68020 and SPARC lines of Sun workstations under
SunOS version 3.5 through 4.1 and has been compiled both with g++ (the GNU C++
compiler) and AT&T Cfront 2.0. MOOD has also been ported to the Macintosh under
MPW C++. We plan to port MOOD to the NeXT Machine, MIPS computers, and the
IBM PC and PS/2.

9 Acknowledgements

Ron Kuivila and George Homsy both contributed to the design and implementation of
MOOD. Steven McCanne wrote the UNIX real-time MIDI device driver for the SPARC-
Station.

References

[AK90] David P. Anderson and Ron J. Kuivila. A System for Computer Music Perfor-
mance. Transaction on Computer Systems, 8(1):56{82, 1990.

[Dan89] Roger B. Dannenberg. The Canon Score Language. Computer Music Journal,
13(1), Spring 1989.

[Die88] Glendon Diener. TTrees: An Active Data Structure for Computer Music. In
Proc. International Computer Music Conference, pages 184{188. Computer Music
Association, 1988.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual.
Addison-Wesley, 1990.

[Int89] The International MIDI Association, 5316 W. 57th St., Los Angeles, CA 90056.
MIDI 1.0 Detailed Speci�cation, Document Version 4.1, 1989.

[JB89] David Ja�e and Lee Boynton. An Overview of the Sound and Music Kits for the
NeXT. Computer Music Journal, 13(2), Summer 1989.

[Lan90] Peter S. Langston. Little Languages for Music. Computing Systems, 1990.

[LCV87] Mark A. Linton, Paul R. Calder, and John M. Vlissides. Interviews: A C++
Graphical Interface Toolkit. In USENIX C++ Workshop Proceedings, 1987.

[NeX] NeXT, Inc., 3475 Deer Creek Road, Palo Alto, CA 94394. Object-Oriented Pro-

gramming and Objective-C. NeXT Technical Documentation: Appendices.

[Pop89] Stephen Travis Pope. Machine Tongues XI: Object-Oriented Software Design.
Computer Music Journal, 13(2), Summer 1989.

[US87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In OOPSLA'87
Conference Proceedings, 1987.

