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Logistics
L}

Announcements

o Last lecture, and final presentations, will take place Thursday, June 9th,
from 3-7:30pm in room EEB-303.

@ The lecture will be from 3:00-5:00pm,

@ The final presentations will be from 5:00-7:30pm. Feel free to bring
dinner.

e Final project reports due next Wednesday, June 8th, at 11:45pm (on the
web page, dropbox will be posted shortly).

o Final slides due by 1:00pm on Thursday, also via the dropbox.

e Final talks: Plan for 10 minutes of talking about your project (perhaps 8
minutes of lecture and 2 minutes of questions).
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Logistics

Class Road Map

We need to find one makeup lecture this term.
@ L1 (3/30): @ L11 (5/6): On SFM, polymatroid
o L2 (4/1): member & greedy, Lovész ext.
o L3 (4/6): @ L12 (5/11): Lovasz ext. + polymatroid
props.
o L4 (4/8) .
@ L13 (5/13): More polymatroids, start
@ L5 (4/13): lattices
® L6 (4/15): L14 (5/18): lattices/submodular
@ L7 (4/20): L15 (5/20): lattices, — SFM.
® L8 (4/27): L16 (5/25): — SFM
@ L9 (4/29): ): dep/sat
) ):

6/1): exchange capacities
6/3): SFM algorithm
L20: (6/9): 3-7:30pm (EEB-303)?
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Review
[NRRRN]

Maximizing y

@ The nature of SFM will be very similar to the Edmonds’s matroid
partition problem (recall, asking if E can be partitioned into {/;} each
independent in a matroid M;) and the core algorithm is very similar.
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Review
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Maximizing y

@ The nature of SFM will be very similar to the Edmonds’s matroid
partition problem (recall, asking if E can be partitioned into {/;} each
independent in a matroid M;) and the core algorithm is very similar.

@ Now, from convex polytope theory, any x € Pr can be represented as a
convex combination of at most |E| + 1 extreme points of Pr (each of
which may be generated by greedy).

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 4



Review
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Maximizing y

@ The nature of SFM will be very similar to the Edmonds’s matroid
partition problem (recall, asking if E can be partitioned into {/;} each
independent in a matroid M;) and the core algorithm is very similar.

@ Now, from convex polytope theory, any x € Pr can be represented as a
convex combination of at most |E| + 1 extreme points of Pr (each of
which may be generated by greedy).

@ We keep a feasible solution to the max version of the problem as a
convex combination of such extreme points.
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@ The nature of SFM will be very similar to the Edmonds’s matroid

Review
[NRRRN]

Maximizing y

partition problem (recall, asking if E can be partitioned into {/;} each
independent in a matroid M;) and the core algorithm is very similar.
Now, from convex polytope theory, any x € Pr can be represented as a
convex combination of at most |E| + 1 extreme points of Pr (each of
which may be generated by greedy).

We keep a feasible solution to the max version of the problem as a
convex combination of such extreme points.

That is, let / be an index set, and x(!) be an extreme point of Py for

i € 1. We then keep y as
y = Z Aix() (1)
iel
where \; are convex coefficients.
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Maximizing y

@ The nature of SFM will be very similar to the Edmonds’s matroid
partition problem (recall, asking if E can be partitioned into {/;} each
independent in a matroid M;) and the core algorithm is very similar.

@ Now, from convex polytope theory, any x € Pr can be represented as a
convex combination of at most |E| + 1 extreme points of Pr (each of
which may be generated by greedy).

@ We keep a feasible solution to the max version of the problem as a
convex combination of such extreme points.

e That is, let / be an index set, and x() be an extreme point of Py for

i € 1. We then keep y as
y = Z Aix() (1)
i€l
where \; are convex coefficients.
@ At each step of the algorithm, we either find a larger y, or demonstrate
y's optimality by finding a minimizing A.
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[NRRRN]

Maximizing y

@ The nature of SFM will be very similar to the Edmonds’s matroid
partition problem (recall, asking if E can be partitioned into {/;} each
independent in a matroid M;) and the core algorithm is very similar.

@ Now, from convex polytope theory, any x € Pr can be represented as a
convex combination of at most |E| + 1 extreme points of Pr (each of
which may be generated by greedy).

@ We keep a feasible solution to the max version of the problem as a
convex combination of such extreme points.

e That is, let / be an index set, and x() be an extreme point of Py for

i € 1. We then keep y as
y=_ Aixt) (1)
icl
where \; are convex coefficients.
@ At each step of the algorithm, we either find a larger y, or demonstrate
y's optimality by finding a minimizing A.
e Start with y =0, / = {1}, Ay = 1, and v(1) = 0.
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Review
(LERNN]

Saturation Capacity

@ For x € Pr, and e € E, consider finding
max{a:a € R, x+ al. € Pr} (2)
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Review
(LERNN]

Saturation Capacity

@ For x € Pr, and e € E, consider finding
max{a:a € R, x+ al. € Pr} (2)
o ldentical to:
max{a : (x + al.)(A) < f(A),YA D {e}} (3)

since B C E such that e ¢ B have the same value
(x + ale)(B) = x(B).
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Review
(LERNN]

Saturation Capacity

@ For x € Pr, and e € E, consider finding
max{a:a € R, x+ al. € Pr} (2)
@ Identical to:
max{a : (x + al.)(A) < f(A),YA D {e}} (3)
since B C E such that e ¢ B have the same value
(x + ale)(B) = x(B).
@ Again identical to:
max {a : x(A) + a < f(A),VAD {e}} (4)
or
max {a : a < f(A) — x(A),VA D {e}} (5)
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Saturation Capacity

@ For x € Pr, and e € E, consider finding
max{a:a € R, x+ al. € Pr} (2)
o Identical to:
max{a : (x + al.)(A) < f(A),YA D {e}} (3)
since B C E such that e ¢ B have the same value
(x + ale)(B) = x(B).
@ Again identical to:

max {a : x(A) + a < f(A),VAD {e}} (4)
max {a : a < f(A) — x(A),VA D {e}} (5)

@ This max is achieved when
a = 2&(x;e) & min {f(A) — x(A), VA D {e}} (6)
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Saturation Capacity

@ For x € Pr, and e € E, consider finding
max{a:a € R, x+ al. € Pr} (2)
o Identical to:
max{a : (x + al.)(A) < f(A),YA D {e}} (3)
since B C E such that e ¢ B have the same value
(x + ale)(B) = x(B).
@ Again identical to:

max {a : x(A) + a < f(A),VAD {e}} (4)
or
max {a : a < f(A) — x(A),VA D {e}} (5)
@ This max is achieved when
a = 2&(x;e) & min {f(A) — x(A), VA D {e}} (6)
@ &(x;e) is known as the saturation capacity associated with x € P and
e.
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Review
(LERNN]

Saturation Capacity

@ Thus we have for x € P,
&(x; e) & min {f(A) — x(A),VA D {e}} (7)
=max{a:a R x+ale € Pr} (8)
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Saturation Capacity

@ Thus we have for x € P,
&(x; e) & min {f(A) — x(A),VA D {e}} (7)
=max{a:a R x+ale € Pr} (8)
e We immediately see that for e € E \ sat(x), we have that &(x;e) > 0.
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Saturation Capacity

@ Thus we have for x € P,
&(x; e) & min {f(A) — x(A),VA D {e}} (7)
=max{a:a R x+ale € Pr} (8)
e We immediately see that for e € E \ sat(x), we have that &(x;e) > 0.

@ Also, for e € sat(x), we have that ¢(x; e) = 0.
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Saturation Capacity

@ Thus we have for x € P,
&(x; e) & min {f(A) — x(A),VA D {e}} (7)
=max{a:a R x+ale € Pr} (8)
e We immediately see that for e € E \ sat(x), we have that &(x;e) > 0.
@ Also, for e € sat(x), we have that ¢(x; e) = 0.

e Note that any « with 0 < o < &(x; e) we have x + al. € Ps.
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(LERNN]

Saturation Capacity

@ Thus we have for x € P,
&(x; e) & min {f(A) — x(A),VA D {e}} (7)
=max{a:a R x+ale € Pr} (8)
e We immediately see that for e € E \ sat(x), we have that &(x;e) > 0.
@ Also, for e € sat(x), we have that ¢(x; e) = 0.
o Note that any o with 0 < v < &(x; e) we have x + al. € Pr.

e We also see that computing &(x; e) is a form of submodular function
minimization.
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(RLRNN]

Exchange Capacity
o Now consider x € Pf, e € sat(x) and €’ € dep(x, e) \ {e}
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Exchange Capacity
o Now consider x € Pf, e € sat(x) and €’ € dep(x, e) \ {e}

o recall that dep(x, e) \ {e} is tight for e € sat(x), so x(e’) > 0 for
e’ € dep(x, e) \ {e}.
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Exchange Capacity

o Now consider x € Pf, e € sat(x) and €’ € dep(x, e) \ {e}

o recall that dep(x, e) \ {e} is tight for e € sat(x), so x(e’) > 0 for
e’ € dep(x, e) \ {e}.

@ Thus, for any a > 0, we have x + al. ¢ Pr.
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Exchange Capacity

o Now consider x € Pf, e € sat(x) and €’ € dep(x, e) \ {e}

o recall that dep(x, e) \ {e} is tight for e € sat(x), so x(e’) > 0 for
e’ € dep(x, e) \ {e}.

@ Thus, for any a > 0, we have x + al. ¢ Pr.

o Consider
max{a:a € R, x+ a(le — 1o) € Pr} (9)
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Exchange Capacity

o Now consider x € Pf, e € sat(x) and €’ € dep(x, e) \ {e}

o recall that dep(x, e) \ {e} is tight for e € sat(x), so x(e’) > 0 for
e’ € dep(x, e) \ {e}.

@ Thus, for any a > 0, we have x + al. ¢ Pr.

o Consider
max{a:a € R, x+a(le — 1) € Pr} (9)
@ Identical to:
max{a:a € R, (x+ a(le — 1+))(A) < f(A),VA} (10)
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Exchange Capacity
Now consider x € Pr, e € sat(x) and €’ € dep(x,e) \ {e}

recall that dep(x, e) \ {e} is tight for e € sat(x), so x(e’) > 0 for
e’ € dep(x, e) \ {e}.

Thus, for any a > 0, we have x + al. ¢ Pr.
Consider
max{a:a € R, x+a(le — 1) € Pr} (9)
Identical to:
max{a:a € R, (x+ a(le — 1+))(A) < f(A),VA} (10)
Note that if both e, &’ € A, then a(1e — 1¢)(A) = 0 for any «, so to

make this meaningful, we take A: e’ ¢ A D {e}, thus identical to
max {a: a € R, (x + a(le — 1o))(A) < f(A),VA D {e}, € ¢ A} (11)
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Exchange Capacity
Now consider x € Pr, e € sat(x) and €’ € dep(x,e) \ {e}

recall that dep(x, e) \ {e} is tight for e € sat(x), so x(e’) > 0 for
e’ € dep(x, e) \ {e}.

Thus, for any a > 0, we have x + al. ¢ Pr.
Consider
max{a:a € R, x+a(le — 1) € Pr} (9)
Identical to:
max{a:a € R, (x+ a(le — 1+))(A) < f(A),VA} (10)
Note that if both e, &’ € A, then a(1e — 1¢)(A) = 0 for any «, so to

make this meaningful, we take A: e’ ¢ A D {e}, thus identical to
max {a: a € R, (x + a(le — 1o))(A) < f(A),VA D {e}, € ¢ A} (11)
Which is identical to:
max{a:a € R,a(le — 1))(A) < f(A) — x(A),VA D {e}, e ¢ A}
(12)
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Exchange Capacity
@ In such case, we get 1./(A) = 0, thus above identical to
max{a:a € R,al.(A) < f(A) — x(A),VAD {e},e' ¢ A}  (13)
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Exchange Capacity
@ In such case, we get 1./(A) = 0, thus above identical to
max{a:a € R,al.(A) < f(A) — x(A),VAD {e},e' ¢ A}  (13)
@ Restating, we've got
max {a: o € R, < f(A) — x(A),VA D {e}, €' ¢ A} (14)
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Exchange Capacity
@ In such case, we get 1./(A) = 0, thus above identical to
max{a:a € R,al.(A) < f(A) — x(A),VAD {e},e' ¢ A}  (13)
@ Restating, we've got
max {a: o € R, < f(A) — x(A),VA D {e}, €' ¢ A} (14)
@ This max is achieved when
a=2(x;e €)% min {f(A) — x(A),VA D {e}, ¢ ¢ A} (15)
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Exchange Capacity
@ In such case, we get 1./(A) = 0, thus above identical to
max{a:a € R,al.(A) < f(A) — x(A),VAD {e},e' ¢ A}  (13)
@ Restating, we've got
max {a: o € R, < f(A) — x(A),VA D {e}, €' ¢ A} (14)
@ This max is achieved when
a=2(x;e €)% min {f(A) — x(A),VA D {e}, ¢ ¢ A} (15)
@ &(x;e,€') is known as the exchange capacity associated with x € P
and e.
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Exchange Capacity
@ In such case, we get 1./(A) = 0, thus above identical to
max{a:a € R,al.(A) < f(A) — x(A),VAD {e},e' ¢ A}  (13)
@ Restating, we've got
max {a: o € R, < f(A) — x(A),VA D {e}, €' ¢ A} (14)
@ This max is achieved when
a=2(x;e €)% min {f(A) — x(A),VA D {e}, ¢ ¢ A} (15)
@ &(x;e,€') is known as the exchange capacity associated with x € P
and e.

e For any o with 0 < v < &(x; e, €'), we have that x + a(1e — 1) € Pr.
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dep revisited

@ Given x € Py, recall distributive lattice of tight sets
D(x) ={A: x(A) = f(A)}
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dep revisited

@ Given x € Py, recall distributive lattice of tight sets
D(x) ={A: x(A) = f(A)}

@ We had that sat(x) = |J{A: A€ D(x)} is the “1" element of this
lattice.
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dep revisited

@ Given x € Py, recall distributive lattice of tight sets
D(x) ={A: x(A) = f(A)}

@ We had that sat(x) = |J{A: A€ D(x)} is the “1" element of this
lattice.

o Consider the “0" element of D(x), i.e., dry(x) -y N{A: AeD(x)}
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dep revisited

@ Given x € Py, recall distributive lattice of tight sets
D(x) = {A: x(A) = f(A)}

@ We had that sat(x) = |J{A: A€ D(x)} is the “1" element of this
lattice.

o Consider the “0" element of D(x), i.e., dry(x) -y N{A: AeD(x)}

@ We can see dry(x) as the elements that are necessary for tightness.
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dep revisited

@ Given x € Py, recall distributive lattice of tight sets
D(x) ={A: x(A) = f(A)}

@ We had that sat(x) = |J{A: A€ D(x)} is the “1" element of this
lattice.

o Consider the “0" element of D(x), i.e., dry(x) -y N{A: AeD(x)}
@ We can see dry(x) as the elements that are necessary for tightness.

@ That is, we can view dry(x) as
dry(x) = {€' : x (A),VAZ €'} (16)
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dep revisited

@ Given x € Py, recall distributive lattice of tight sets

D(x) = {A: x(A) = F(A)}

We had that sat(x) = (J{A: A€ D(x)} is the "1" element of this
lattice.

Consider the “0" element of D(x), i.e., dry(x) % N{A: A € D(x)}
We can see dry(x) as the elements that are necessary for tightness.

@ That is, we can view dry(x) as
dry(x) = {€' : x (A),VAZ €'} (16)
@ Perhaps, then, a better name for dry is nsat( ), for the necessary for

tightness.
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dep revisited

Given x € Py, recall distributive lattice of tight sets

D(x) ={A: x(A) = f(A)}

We had that sat(x) = (J{A: A€ D(x)} is the "1" element of this
lattice.

Consider the “0" element of D(x), i.e., dry(x) % N{A: A € D(x)}
We can see dry(x) as the elements that are necessary for tightness.
That is, we can view dry(x) as

dry(x) = {€' : x (A),VAZ €'} (16)
Perhaps, then, a better name for dry is nsat(x), for the necessary for
tightness.

This can be read as, for any €’ € dry(x), any set that does not contain
e’ is not tight for x.
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dep revisited

@ Now, given x € Pf, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A x(A) = f(A)}
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dep revisited

@ Now, given x € Pf, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A x(A) = f(A)}

@ We can deffine the “1" element of this lattice as
sat(x,e) ¥ (J{A: A D(x,e)l}.
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dep revisited

@ Now, given x € Pf, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A x(A) = f(A)}

@ We can define the “1” element of this lattice as
sat(x,e) & J{A: A c D(x,e)}.

@ Analogously, we can define the “0" element of this lattice as
dry(x, &) ' N{A: AeD(x,e)}.
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dep revisited

@ Now, given x € Py, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A, x(A) = f(A)}

@ We can define the “1" element of this lattice as
sat(x,e) & J{A: A c D(x,e)}.

@ Analogously, we can define the “0" element of this lattice as
dry(x, &) ' N{A: AeD(x,e)}.

@ We can see dry(x, e) as the elements that are necessary for e-containing
tightness, with e € sat(x).
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dep revisited

Now, given x € Pr, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A, x(A) = f(A)}

We can define the “1” element of this lattice as

sat(x,e) & J{A: A c D(x,e)}.

Analogously, we can define the “0" element of this lattice as

dry(x, &) ' N{A: AeD(x,e)}.

We can see dry(x, e) as the elements that are necessary for e-containing
tightness, with e € sat(x).

That is, we can view dry(x, e) as
dry(x,e) = {€' : x (A),VAZ €, ec A} (17)

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 7



Review
(AR RN

dep revisited

Now, given x € Pr, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A, x(A) = f(A)}
We can define the “1” element of this lattice as
sat(x,e) & J{A: A c D(x,e)}.
Analogously, we can define the “0" element of this lattice as
dry(x, &) ' N{A: AeD(x,e)}.
We can see dry(x, e) as the elements that are necessary for e-containing
tightness, with e € sat(x).
That is, we can view dry(x, e) as

dry(x,e) = {€' : x(A) < f(A),VAZ €, e € A} (17)
This can be read as, for any €’ € dry( X, ), any e-containing set that
does not contain €’ is not tight for x.

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 7



Review
(AR RN

dep revisited

Now, given x € Pr, and e € sat(x), recall distributive lattice of
e-containing tight sets D(x,e) = {A: e € A, x(A) = f(A)}
We can define the “1” element of this lattice as
sat(x,e) & J{A: A c D(x,e)}.
Analogously, we can define the “0" element of this lattice as
dry(x, &) ' N{A: AeD(x,e)}.
We can see dry(x, e) as the elements that are necessary for e-containing
tightness, with e € sat(x).
That is, we can view dry(x, e) as

dry(x,e) = {€' : x (A),VAZ €, ec A} (17)
This can be read as, for any €’ € dry( X, ), any e-containing set that
does not contain €’ is not tight for x.
Notice also that dry(x, e) = dep(x, e).
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dep revisited

@ Now, we have the following equalities for dep(x, e):

dep(x, e) =

Prof. Jeff Bilmes

{e:
{e:
{e:
{e:

{e:

x(A) < f(A),YAZ €, e € A} (18)
Ja >0, st. a < f(A) — x(A),YA % ¢, e € A} (19)
Ja >0, s.t. al.(A) < f(A) — x(A),VAZ e',e € A} (20)
Ja >0, s.t. a(1e(A) — 1 (A)) < f(A) — x(A),VAZ ', e € A}
(21)
Ja >0, s.t. x(A) + a(1e(A) — 1 (A)) < F(A),VAZ ', e € A}
(22)
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dep revisited

@ Now, we have the following equalities for dep(x, e):

dep(x,e) = {e : x(A) < f(A),VAZ ' e € A} (18)
={e¢' :Ja >0, st. a < f(A) —x(A),VAZ &', e € A} (19)
={e :Ja >0, s.t. al.(A) < f(A) — x(A),VA Z €, e € A} (20)
— {1 Ta >0, st a(le(A) = 1o(A)) < F(A) — x(A), VA F ¢, e € A}
(21)
— (e :Ta> 0, st. x(A) + a(1e(A) — 10 (A) < F(A),VA F &, e € A}
(22)

@ Now, 1.(A) — 1 (A) =0 if either {e, e’} C A, or {e,e'} NA=10.

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 7



Review
(AR RN

dep revisited

@ Now, we have the following equalities for dep(x, e):

dep(x,e) = {e : x(A) < f(A),VAZ ' e € A} (18)
={e :Ja >0, s.t. a<f(A)— x(A),VA Z €' e € A} (19)
={e :Fa >0, st. als(A) < f(A) — x(A),VAZ e, e € A} (20)
—{e:3a>0, st. a(l (A) = 1..(A)) < F(A) — x(A),VA F &, e € A}
(21)
— (¢ :Fa>0, st x(A) + a(l.(A) - 1 (A)) < F(A),VAF €, e c A}
(22)
@ Now, 1.(A) — 1o(A) = 0 if either {e, e’} C A, or {e, e} NA=1.
o Also, if ¢ € Abut e ¢ A, then
x(A) + a(1e(A) — 1(A)) = x(A) — a < f(A) since x € Ps.
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dep revisited

@ thus, we get the same in the above if we remove the constraint
AZ e ec A that is we get
dep(x,e) = {€' : Ja > 0, s.t. x(A) + a(1e(A) — 1o(A)) < F(A),VA} (
@ This is then identical to
dep(x,e) = {€ : Ja >0, s.t. x + a(le — 1) € Pr} (24)
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dep and sat

The following picture summarizes the relationships.
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From vertex to vertex

e We will need to move from one extreme point to another (adjacent)
extreme point, and will use an augmenting path like approach to do so.

@ How do we characterize such adjacent extreme points?
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From vertex to vertex

Theorem 3.1

Let x be an extreme point of Pr, and let =X be its partial order. Then, each
of the following three operations will yield a new extreme point w:
(a) Let a,b € E and a cover b relative to <, so b [C a. Let

w = x + al, — alp with a = f(dep(x, a) — b) — x(dep(x, a) — b).
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From vertex to vertex

Theorem 3.1

Let x be an extreme point of Pr, and let =X be its partial order. Then, each
of the following three operations will yield a new extreme point w:
(a) Let a,b € E and a cover b relative to <, so b [C a. Let
w = x + al, — alp with a = f(dep(x, a) — b) — x(dep(x, a) — b).
(b) Let a € E \ sat(x), and let w = x + al, where
a = f(sat(x) + a) — f(sat(x)).
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From vertex to vertex

Theorem 3.1

Let x be an extreme point of Pr, and let =X be its partial order. Then, each
of the following three operations will yield a new extreme point w:

(a) Let a,b € E and a cover b relative to <, so b [C a. Let

w = x + al, — alp with a = f(dep(x, a) — b) — x(dep(x, a) — b).
(b) Let a € E \ sat(x), and let w = x + al, where

a = f(sat(x) + a) — f(sat(x)).
(c) Let a € supp(x) be maximal (w.r.t. <), and let w — x — x(a)1,.
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From Vertex to Vertex

e For (a), let x be generated by E; = (e, €,...,k_1,b,a, €k12,...,€)
and consider generating w with an order with a and b swapped, i.e.,
E,/ - (ela €,...,6k-1,4, b7 €k+42,5 -+, ei)
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From Vertex to Vertex

e For (a), let x be generated by E; = (e, €,...,k_1,b,a, €k12,...,€)
and consider generating w with an order with a and b swapped, i.e.,
E' = (e1,€,...,6k-1,a,b,exs2,...,6€)

@ Then

€1,...,ek_1,b) —fe1,...,ex_1)

e1,...,ek—1,b,a) — f(e1,...,ex_1,b)

e1,...,ek—1,a,b) —f(er,..., ex_1,a)

€1,...,6k—1,a) —f(er,...,ex-1)
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From Vertex to Vertex

e For (a), let x be generated by E; = (e, €,...,k_1,b,a, €k12,...,€)
and consider generating w with an order with a and b swapped, i.e.,
E' = (e1,€,...,6k-1,a,b,exs2,...,6€)
@ Then
x(b) =f(e1,...,ek—1,b) — f(e1,...,exk_1) (25)
x(a):f(el,...,ek_l,&a)—f(el,...,ek_l,b\) (26)
w(b) = f(e1,...,ex—1,a,b) — f(e1,...,ek—1,a) (27)
w(a :f(el,...,ek_l,f)—f(el, -y €k—-1) (28)

o First, we have (w — x)(e) = 0 for all e ¢ {a, b} since in each case the
differences are the same.
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From Vertex to Vertex

@ For a we have:

(w —x)(a) = f(es,.. .,ek_l,i) —f(er,...,ex-1) (29)
—f(e1,...,ex—1,a,b)+f(e1,...,ex_1,b) (30)
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From Vertex to Vertex

@ For a we have:

Prof. Jeff Bilmes

(w—x)(a) =f(er,...,ex—1,a) — f(e1,..., k1)
— f(el, ce, €41, 4, b) + f(el, ceey €k—1, b)

(W —X)(b) = f(el, ey, €k_1,4, b) — f(el, .. .,ek_l,a)
- f(eb ) b) + f(eb SRR) ek—l)
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From Vertex to Vertex

@ For a we have:

(w—x)(a) =f(e1,...,ex-1,a) — f(e1,...,ek_1) (29)
—f(el,...,ek,l,a, b)+f(e1,...,ek,1,b) (30)
o For b, we have
(w—x)(b)="f(e1,...,ek—1,a,b) —f(e1,...,ex_1,a) (31)
—f(e1,...,ex—1,b)+ f(e1,...,ex-1) (32)
@ so we immediately see that

(w —x)(a) = —(w — x)(b) (33)
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From Vertex to Vertex

@ For a we have:

(w—x)(a) =f(er,...,ex—1,a) — f(e1,..., k1) (29)
—f(el,...,ek,l,a, b)+f(e1,...,ek,1,b) (30)
o For b, we have
(w—x)(b)="f(e1,...,ek—1,a,b) —f(e1,...,ex_1,a) (31)
—f(e1,...,ex—1,b)+ f(e1,...,ex-1) (32)
@ so we immediately see that
(w —x)(a) = —(w — x)(b) (33)
e So with a = (w — x)(a) we have
w=x+a(l,—1p) (34)

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 12



— SFM
(RRE RRRRRRRRRRRRARY!

From Vertex to Vertex

@ Moreover, we see that since

(w—x)(a) =f(e1,...,ex-1,a) — f(e1,...,€k—1) (35)
—f(el,...,ek_l,a,b)+f(el,...,ek_l,b) (36)
(37)
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From Vertex to Vertex

@ Moreover, we see that since

(w—x)(a) =f(e1,...,ex—1,a) — f(e1,...,ek—1) (35)
—f(el,...,ek_l,a,b)+f(el,...,ek_l,b) (36)
(37)

@ and since by submodularity we have
fler, ..., ek—1,a) — f(er,..., ex-1)
> f(er,. .., e-1,8,b) — f(er, .., &1, b) (38)

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 13



— SFM
(RRE RRRRRRRRRRRRARY!

From Vertex to Vertex

@ Moreover, we see that since

(w—x)(a) =f(e1,...,ex—1,a) — f(e1,...,ek—1)
— f(el, ey, €k—1,4a, b) + f(el, ce, €k—1, b)

@ and since by submodularity we have

fler, ..., ek—1,a) — f(er,..., ex-1)
> f(el, ey €k—1,4a, b) — f(el, .. .,ek,l,b)

@ We have that

Prof. Jeff Bilmes

(w—x)(a) =0
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From Vertex to Vertex

@ Moreover, we see that since

(w—x)(a) =f(e1,...,ex—1,a) — f(e1,...,ek_1) (35)
—f(e1,...,ex—1,a,b)+f(e1,...,ex—1,b) (36)
(37)

@ and since by submodularity we have

f(er,...,ex—1,a) —f(er,..., k1)
> f(ei,...,ek—1,a,b) —f(e1,...,ex_1,b) (38)
@ We have that

(w—x)(a) = 0 (39)

@ Now both x and w are extreme points (generated by greedy algorithm),
so any point Ax + (1 — A)w is in the base of supp(x)
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From Vertex to Vertex

@ Moreover, we see that since

(w—x)(a) =f(e1,...,ex—1,a) — f(e1,...,ek_1) (35)
—f(e1,...,ex—1,a,b)+f(e1,...,ex—1,b) (36)
(37)

@ and since by submodularity we have

f(er,...,ex—1,a) —f(er,..., k1)
> f(ei,...,ek—1,a,b) —f(e1,...,ex_1,b) (38)
@ We have that

(w—x)(a) = 0 (39)

@ Now both x and w are extreme points (generated by greedy algorithm),
so any point Ax + (1 — A)w is in the base of supp(x)

o If all E is used, then each of x and w are in Bf and the convex
combination lies on one of the skeletal edges of By.
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From Vertex to Vertex and exchange capacity

@ Therefore, defining

a=(w-x)(a)="f(e,...,ex-1,a) — f(e1,...,ex-1) (40)
—f(e1,...,ex—1,a,b) +f(e1,...,ex—1,b) (41)
(42)

we see that &(x; a, b) > «
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From Vertex to Vertex and exchange capacity

@ Therefore, defining

a=(w-x)(a)="f(e,...,ex-1,a) — f(e1,...,ex-1) (40)
—f(e1,...,ex—1,a,b) +f(e1,...,ex—1,b) (41)
(42)

we see that &(x; a, b) > «

@ On the other hand, moving from x to w jumps between two extreme

points, and if we moved any less than &(x; a, b) this wouldn't be the
case.
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From Vertex to Vertex and exchange capacity

@ Therefore, defining

a=(w-x)(a)="f(e,...,ex-1,a) — f(e1,...,ex-1) (40)
—f(e1,...,ex—1,a,b) +f(e1,...,ex—1,b) (41)
(42)

we see that &(x; a, b) > «

@ On the other hand, moving from x to w jumps between two extreme
points, and if we moved any less than &(x; a, b) this wouldn't be the
case.

@ Thus,
a = ¢(x; a, b) 4 in {f(A) — x(A),YA D {a},b ¢ A} (43)
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From Vertex to Vertex and exchange capacity

@ Therefore, defining

a=(w-x)(a)="f(e,...,ex-1,a) — f(e1,...,ex-1) (40)
—f(e1,...,ex—1,a,b) +f(e1,...,ex—1,b) (41)
(42)

we see that &(x; a, b) > «

@ On the other hand, moving from x to w jumps between two extreme
points, and if we moved any less than &(x; a, b) this wouldn't be the
case.

@ Thus,
a = ¢(x; a, b) 4 in {f(A) — x(A),YA D {a},b ¢ A} (43)

@ Interestingly, this particular submodular minimization problem is easy.
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Br dominates

Let x € Pr and let T = sat(x). Then there exists y € B such that y > x
with y(e) = x(e) fore € T.

@ Consider a form of the greedy procedure, where we update x
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Br dominates

Let x € Pr and let T = sat(x). Then there exists y € B such that y > x
with y(e) = x(e) fore € T.

@ Consider a form of the greedy procedure, where we update x

o lterate the following procedure, for any e ¢ sat(x)
X x+¢&(x;e) (44)
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Br dominates

Let x € Pr and let T = sat(x). Then there exists y € B such that y > x
with y(e) = x(e) fore € T.

@ Consider a form of the greedy procedure, where we update x
o lterate the following procedure, for any e ¢ sat(x)

X+ x + &(x; e)j< (44)
o Thus, after x update, e, we still have x € Pr.
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Br dominates

Let x € Pr and let T = sat(x). Then there exists y € B such that y > x
with y(e) = x(e) fore € T.

@ Consider a form of the greedy procedure, where we update x

o lterate the following procedure, for any e ¢ sat(x)
X x + &(x; e)J;, (44)
o Thus, after x update, e, we still have x € Pr.

@ Moreover, at each update there is a set S, that achieves the min in the
min form of ¢(x; e). This set S, is tight for the new x and remains tight
for all subsequent iterations.
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Br dominates

Let x € Pr and let T = sat(x). Then there exists y € B such that y > x
with y(e) = x(e) fore € T.

@ Consider a form of the greedy procedure, where we update x

o lterate the following procedure, for any e ¢ sat(x)
X x+¢&(x;e) (44)
o Thus, after x update, e, we still have x € Pr.

@ Moreover, at each update there is a set S, that achieves the min in the
min form of c(x; e). This set S is tight for the new x and remains tight
for all subsequent iterations.

@ Eventually we stop, and since E = T U UengSe is the union of tight
sets (for x), we see that the resulting x has x € By.
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More on dep

Given any extreme point x € Pf, then for any e € supp(x), we have
x(e) = f(dep(x, e)) — f(dep(x,€) \ €) = X.e

@ Consider all orderings that generate x and choose the one where e
occurs earliest.
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More on dep

Given any extreme point x € Py, then for any e € supp(x), we have
= f(dep(x, e)) — f(dep(x,e) \ e)

° Con5|der all orderings that generate x and choose the one where e
occurs earliest.

o Let E = (ey,...,¢€;) be that order, letting e = e.

€
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More on dep

Given any extreme point x € Py, then for any e € supp(x), we have
= f(dep(x, e)) — f(dep(x,e) \ e)

° Con5|der all orderings that generate x and choose the one where e
occurs earliest.

o Let E = (ey,...,¢€;) be that order, letting e = e.
@ Then dep(x,e) = {e1,..., e}
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More on dep

Given any extreme point x € Py, then for any e € supp(x), we have
= f(dep(x, e)) — f(dep(x,e) \ e)

° Con5|der all orderings that generate x and choose the one where e
occurs earliest.

o Let E = (ey,...,¢€;) be that order, letting e = e.
@ Then dep(x,e) = {e1,..., e}

@ Since this generates x, we have
x(e) = f(xqy,...,xk) — f(x1,...,xk_1) = f(dep(x, e)) — f(dep(x,e) \ e)
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More on dep

Given any extreme point x € Py, then for any e € supp(x), we have
= f(dep(x, e)) — f(dep(x,e) \ e)

° Con5|der all orderings that generate x and choose the one where e
occurs earliest.

o Let E = (ey,...,¢€;) be that order, letting e = e.
@ Then dep(x,e) = {e1,..., e}
@ Since this generates x, we have
x(e) = f(xqy,...,xk) — f(x1,...,xk_1) = f(dep(x, e)) — f(dep(x,e) \ e)
@ Alt proof: We saw earlier that both dep(x, e) and dep(x,e) \ e are
tight, since e is maximal in dep(x, e) using order < on x.
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More on dep

Given any extreme point x € Py, then for any e € supp(x), we have
= f(dep(x, e)) — f(dep(x,e) \ e)

C0n5|der all orderings that generate x and choose the one where e
occurs earliest.
o Let E = (ey,...,¢€;) be that order, letting e = e.
@ Then dep(x,e) = {e1,..., e}
@ Since this generates x, we have
x(e) = f(xqy,...,xk) — f(x1,...,xk—1) = f(dep(x, e)) — f(dep(x,e) \ e)
@ Alt proof: We saw earlier that both dep(x, e) and dep(x,e) \ e are
tight, since e is maximal in dep(x, e) using order < on x.
@ Thus f(dep(x, e)) = x(dep(x, e)) and f(dep(x, e)\ e) = x(dep(x, e) \ €)
x (duy(x0)l¢) = x(dp (x2)) - xle) = F (4p(xe) )-tlx)
H i) —
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More on dep

G/ven any extreme point x € Py, then for any e € supp(x), we have
= f(dep(x, e)) — f(dep(x,e) \ e)

C0n5|der all orderings that generate x and choose the one where e
occurs earliest.

o Let E = (ey,...,¢€;) be that order, letting e = e.
@ Then dep(x,e) = {e1,..., e}
@ Since this generates x, we have
x(e) = f(xqy,...,xk) — f(x1,...,xk_1) = f(dep(x, e)) — f(dep(x,e) \ e)
@ Alt proof: We saw earlier that both dep(x, e) and dep(x,e) \ e are
tight, since e is maximal in dep(x, e) using order < on x.

@ Thus f(dep(x, e)) = x(dep(x, e)) and f(dep(x, e)\ e) = x(dep(x, e) \ €)

@ This gives the same result.
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

o Edges may go from s only to nodes in E, they may go between nodes in
E, and edges may to to t only from nodes in E.
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

o Edges may go from s only to nodes in E, they may go between nodes in
E, and edges may to to t only from nodes in E.

o At each iteration, we have a y = 3", A\jx/ where x/ is an extremal
point, and {A;}, is convex combination.
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

o Edges may go from s only to nodes in E, they may go between nodes in
E, and edges may to to t only from nodes in E.

o At each iteration, we have a y = 3", A\jx/ where x/ is an extremal
point, and {A;}, is convex combination.

@ At each step we find a better y or show that it is maximizing by finding
a minimizing A (using Edmond’s theorem as certificate of optimality).
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

o Edges may go from s only to nodes in E, they may go between nodes in
E, and edges may to to t only from nodes in E.

o At each iteration, we have a y = 3", A\jx/ where x/ is an extremal
point, and {A;}, is convex combination.

@ At each step we find a better y or show that it is maximizing by finding
a minimizing A (using Edmond’s theorem as certificate of optimality).

o Initially we take y = 0 with / = {1}, \; =1 and x! = 0.
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

o Edges may go from s only to nodes in E, they may go between nodes in
E, and edges may to to t only from nodes in E.

o At each iteration, we have a y = 3", A\jx/ where x/ is an extremal
point, and {A;}, is convex combination.

@ At each step we find a better y or show that it is maximizing by finding
a minimizing A (using Edmond’s theorem as certificate of optimality).

o Initially we take y = 0 with / = {1}, \; =1 and x! = 0.
@ For distinct a, b € E, define
F(a,b) = {j € :acovers b in partial order =< of ¥/}  (45)
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The directed graph

o Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

@ Edges may go from s only to nodes in E, they may go between nodes in
E, and edges may to to t only fron

. . _ i .l | _] .
@ At each iteration, we havefa y = Zje, Ajx! where x/ is an extremal

point, and {A;}, is convex kombination.

@ At each step we find a better yor show that it is maximizing by finding
a minimizing A (using Edmond’s theorem as certificate of optimality).

o Initially we take y = 0 with / = {1}, \; =1 and x! = 0.
@ For distinct a, b € E, define
F(a,b) = {j € :acovers b in partial order =< of ¥/}  (45)

@ This will be used to produce edges from a to b in order to “augment” y
via an exchange like operation.
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The directed graph

o Similarly, for a € E, define
F(a,g):{jelzagésat(xj)} (46)
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The directed graph

o Similarly, for a € E, define
F(a,s)={j€l:a¢sat(x)} (46)
@ Used to produce edges between a and s to augment y via an
“augment” operation (add a new dimension).
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The directed graph

o Similarly, for a € E, define
F(a,s)={j€l:a¢sat(x)} (46)
@ Used to produce edges between a and s to augment y via an
“augment” operation (add a new dimension).
@ Recall the key relationship
max(y(E):y < x,y € Pf)=min(f(A)+x(E\A): ACE) (47)
where x is the modular function so constructed making f totally
normalized.
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The directed graph

o Similarly, for a € E, define
F(a,s)={j€l:a¢sat(x)} (46)
@ Used to produce edges between a and s to augment y via an
“augment” operation (add a new dimension).

@ Recall the key relationship
max(y(E):y < x,y € Pf)=min(f(A)+x(E\A): ACE) (47)
where x is the modular function so constructed making f totally
normalized.

@ We want each step to increase y while still being feasible to the |.h.s.
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The directed graph

@ We now define the edges and capacities of the graph.
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The directed graph

@ We now define the edges and capacities of the graph.
e For each a € E with y(a) < x(a), we add an edge (s, a) with capacity
u(s, a) = x(a) — y(a).
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The directed graph

@ We now define the edges and capacities of the graph.

e For each a € E with y(a) < x(a), we add an edge (s, a) with capacity
u(s,a) = x(a) — y(a).

e Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.
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The directed graph

@ We now define the edges and capacities of the graph.

e For each a € E with y(a) < x(a), we add an edge (s, a) with capacity
u(s,a) = x(a) — y(a).

e Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.

e For each pair a, b € E + t, that has F(a, b) # (), we create an edge
(a, b) in the graph with capacity

u(a,b)= > Ne(x;ab) (48)

JjEF(a;b)
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The directed graph

@ We now define the edges and capacities of the graph.

e For each a € E with y(a) < x(a), we add an edge (s, a) with capacity
u(s,a) = x(a) — y(a).

e Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.

e For each pair a, b € E + t, that has F(a, b) # (), we create an edge
(a, b) in the graph with capacity
u(a,b)= > Ne(x;ab) (48)
JEF(a,b)
e For a,b € E, &(x/; a, b) is the exchange capacity for a, b under extreme
vector x/.
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The directed graph

We now define the edges and capacities of the graph.

For each a € E with y(a) < x(a), we add an edge (s, a) with capacity
u(s,a) = x(a) — y(a).

Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.

For each pair a,b € E + t, that has F(a, b) # (), we create an edge
(a, b) in the graph with capacity

u(a,b)= > Ne(x;ab) (48)

JjEF(a,b)

For a,b € E, &(x/; a, b) is the exchange capacity for a, b under extreme
vector x/.
For a€ E and b =t, &(x/; a, b) = &(x/; a) is the saturation capacity
associated with x/ and a.
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

@ We prove this over the next few slides.
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

@ We prove this over the next few slides.

@ First, suppose that there exists an s, t dipath and let the vertex set be
s=ap,a1,...,am+1 = t.
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

@ We prove this over the next few slides.

@ First, suppose that there exists an s, t dipath and let the vertex set be
s=ap,a1,...,am+1 = t.
@ For each k with 1 < k < m, choose j(k) € F(ak, ak+1)-
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

@ We prove this over the next few slides.

@ First, suppose that there exists an s, t dipath and let the vertex set be
s=ap,a1,...,am+1 = t.

@ For each k with 1 < k < m, choose j(k) € F(ak, ak+1)-

e For j €, then let n(j) = [{k : j = j(k)}|.
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

We prove this over the next few slides.

First, suppose that there exists an s, t dipath and let the vertex set be
s=ap,a1,...,am+1 = t.

For each k with 1 < k < m, choose j(k) € F(ax, ak+1)-

For j € I, then let n(j) = |{k : j = j(k)}|.

Define 6 = min {\;/n(j) : n(j) > 0}.
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

@ We prove this over the next few slides.

@ First, suppose that there exists an s, t dipath and let the vertex set be
s=ap,a1,...,am+1 = t.

For each k with 1 < k < m, choose j(k) € F(ax, ak+1)-
For j € I, then let n(j) = |{k : j = j(k)}|.

Define 6 = min {\;/n(j) : n(j) > 0}.

Define € = min {&(x/(9); ax, ax11) : 1 < k < m}.
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Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y' € Pr with
y <y’ <x with y'(E) > y(E). If there is no such dipath, then y(A) = f(A)
and y(E \ A) = x(E \ A) for some A C E.

@ We prove this over the next few slides.

@ First, suppose that there exists an s, t dipath and let the vertex set be
s=ap,a1,...,am+1 = t.

@ For each k with 1 < k < m, choose j(k) € F(ak, ak+1)-
e For j €, then let n(j) = [{k : j = j(k)}|.

o Define § = min {\;/n(j) : n(j) > 0}.

o Define € = min {&(x(9); ay, ax11) : 1 < k < m}.

°

Define e = min {€/,x(a1) — y(a1)}

Prof. Jeff Bilmes EE595A /Spr 2011 /Submodular Functions — Lecture 19 - June 3st, 2011 page 20


jab
Pencil


— SFM
(RRRRRRRRRRY ARRRARN!

@ Now, since &€ >= 0 and x(a1) > y(a1) by graph construction, we have
e > 0.
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@ Now, since &€ >= 0 and x(a1) > y(a1) by graph construction, we have
e > 0.

o Foreach 1 < k < m, let 2K =xI(K +¢(1,, —1,,,))
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@ Now, since &€ >= 0 and x(a1) > y(a1) by graph construction, we have
€e>0.
o Foreach 1 < k < m, let 2K =xI(K +¢(1,, —1,,,))

o Also let z™ = x/(M 4 €1,
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@ Now, since &€ >= 0 and x(a1) > y(a1) by graph construction, we have
€e>0.

o Foreach 1 < k < m, let 2K =xI(K +¢(1,, —1,,,))

o Also let z™ = x/(M 4 €1,

o Also, for each j € I, let A} = \; — 6n()).
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@ Now, since &€ >= 0 and x(a1) > y(a1) by graph construction, we have
e 0.

o Foreach 1 < k < m, let zK=xI(K +¢(1,, —1,,,))
o Also let z™ = x/(M 4 €1,
o Also, for each j € I, let A} = \; — 6n()).

@ we then generate y’ as

y' = Z )\j-xj + Z 0zk (49)

jel k:1<k<m
=Y N+ 0el,, (50)
jel
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SFM

@ Now, since &€ >= 0 and x(a1) > y(a1) by graph construction, we have
e > 0.

o Foreach 1 < k < m, let 2K =xI(K +¢(1,, —1,,,))
o Alsolet zm = x/(M 1, UV ——
o Also, for each j € I, let A} = \; — 6n()).

@ we then generate y’ as

y' = Z )\j-xj + Z 0zk (49)

jel k:1<k<m
=Y N+ 0el,, (50)
jel

@ thus, we have y’ € Pr with y’ < x, and y/(E) > y(E).
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@ Also, we have an expression for y’ as a convex combination of extreme
points of Pr.
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@ Also, we have an expression for y’ as a convex combination of extreme
points of Pr.

o Let o = &(x); ay, ax11) and let wk = /(K 4 5, (1,, — 1,, ) for
1<k<m
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@ Also, we have an expression for y’ as a convex combination of extreme
points of Pr.

o Let o = &(x); ay, ax11) and let wk = /(K 4 5, (1,, — 1,, ) for
1<k<m

o And let w™ = xJ(k) 1 E(XJ(’"); am, am+1)1a,,-
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@ Also, we have an expression for y’ as a convex combination of extreme
points of Pr.

o Let 0x = &(x9); ay, axy 1) and let wk = xJ(K) 5, (1, —1
1<k<m

o And let w™ = xJ(k) 1 E(XJ(’"); am, am+1)1a,,-

@ Then for 1 < k < m, we have that w* is also an extreme point (by
previous theorem).

) for

Ak+1
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SFM

@ Also, we have an expression for y’ as a convex combination of extreme

points of Pr.
o Let & = &(x); ay, ax11) and let wk = /(K 4 5, (1, — 1,, ) for
1<k<m

And let w™ = xJ/(k) + E(XJ(’"); am, am+1)1a,,-
Then for 1 < k < m, we have that w¥ is also an extreme point (by
previous theorem).

And so zK = (e/6,)wk + (1 — 6/(5k)xj(k).
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@ Also, we have an expression for y’ as a convex combination of extreme
points of Pr.

o Let o = &(x); ay, ax11) and let wk = /(K 4 5, (1,, — 1,, ) for
1<k<m

o And let w™ = xJ(k) 1 E(XJ(’"); am, am+1)1a,,-

@ Then for 1 < k < m, we have that w* is also an extreme point (by
previous theorem).

o And so zK = (/8 )wk + (1 — €/, )x/ (k).

o Therefore, y’ is a convex combination of at most |l| + m extreme points
as given in Equation 49.
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SFM

@ Also, we have an expression for y’ as a convex combination of extreme

points of Pr.

o Let o = &(x); ay, ax11) and let wk = /(K 4 5, (1,, — 1,, ) for
1<k<m S

o And let w™ = x/) L 2(x(™); an, ami1)1a,. )

@ Then for 1 < k < m, we have that w* is also an extreme point (by
previous theorem).

o And so zK = (/8 )wk + (1 — €/, )x/ (k).
@ Therefore, y’ is a convex combination of at most |/| + m extreme points
as given in Equation 49.

@ This can then be reduced in O(n3) time to at most n+ 1 extreme points
using Carathéodory’s theorem and associated linear algebra routines.
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@ Next, suppose that no s, t path exists.
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@ Next, suppose that no s, t path exists.

@ Then there is a set A C E such that no edge (a, b) of the graph has
acA+sand b¢ A+ s (ie., acut).
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SFM

@ Next, suppose that no s, t path exists.

@ Then there is a set A C E such that no edge (a, b) of the graph has
acA+sand b¢ A+ s (ie., acut).
@ In such case, we (by construction) have that y(k) = x(k) for k € E \ A.
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SFM

@ Next, suppose that no s, t path exists.

@ Then there is a set A C E such that no edge (a, b) of the graph has
acA+sand b¢ A+ s (ie., acut).

@ In such case, we (by construction) have that y(k) = x(k) for k € E \ A.

o Also, if it were the case A is x/ tight for j € /, then we'd have

y(A) = Apd(A) . (51)
jze; )(7//)7(4[/!)

= Nf(A) (52)
jel
= f(A) (53)
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Next, suppose that no s, t path exists.

Then there is a set A C E such that no edge (a, b) of the graph has
acA+sand b¢ A+ s (ie., acut).
In such case, we (by construction) have that y(k) = x(k) for k € E \ A.

Also, if it were the case A is x/ tight for j € I, then we'd have
y(A) =D A (A) (51)
jel
= Nf(A) (52)
jel
= f(A) (53)
Next we show that such an A is tight.

(]
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@ Next we show that such an A is tight.
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@ Next we show that such an A is tight.
o Ifac Aand j €/, then a € sat(x’) since (a, t) is not an edge.
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@ Next we show that such an A is tight.
o Ifac Aand j €/, then a € sat(x’) since (a, t) is not an edge.

@ Moreover, {b: b <j a} C A since otherwise there is a e € A and
d € E\ A such that e covers d in <;.
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Next we show that such an A is tight.

If a€ Aandj €/, then a € sat(x/) since (a, t) is not an edge.

Moreover, {b: b <; a} C A since otherwise there is a e € A and
d € E\ A such that e covers d in <;.

But {b: b <; a} is x/-tight.

(]
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Next we show that such an A is tight.

If a€ Aandj €/, then a € sat(x/) since (a, t) is not an edge.

Moreover, {b: b <; a} C A since otherwise there is a e € A and
d € E\ A such that e covers d in <;.

But {b: b <; a} is x/-tight.
Therefore, A is the union of Xf—tight sets and so itself is xf—tight, as
required.

(]
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If f is integer valued, then so is x, and in such case it is possible to choose
the steps 0 in such a way that the running time of the algorithm is
O(Mn®log(Mn)B3) where M is an integer bound on the max value of f,
n=|E|, and 3 is the cost of evaluating a submodular function query.
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SFM Summary (from S. lwata's slides on SFM)

Submodular Function Minimization

Grotschel, Lovasz, Schrijver (1981, 1988)
Ellipsoid Method

0(715)/ log M) Cunningham (1985)
O(n'ylogn) _~ . OW'y+n)
lwata, Fleischer, Fujishige (2000) Schrijver (2000)
/ 1
Fleischer, lwata (2000)
Iwata (2002) J,

Fully Combinatorial
Iwata (2003) Orlin (2007)

O((n*y +n’)log M) \ / o’y +n°)

Ilwata, Orlin (2009)
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SFM Summary (from S. lwata's slides on SFM)
Submodular Function Minimization

Edmonds (1965)

pd

Bixby,Cunningham, Topkis (1984)

Grotschel, Lovasz, Schrijver (1981, 1988)

Ellipsoid Method /
O(I/IS]/ log M) Cunningham (1985)
O(n’ylogn) ~ N O@'y+n"
Ilwata, Fleischer, Fujishige (2000) Schrijver (2000)
/ )
Fleischer, Iwata (2000)
Iwata (2002) l

Fully Combinatorial
Iwata (2003) Orlin (2007)

O((n'y +n’)log M) \ /O(ny+n)

Iwata, Orlin (2009)
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Announcements

o Last lecture, and final presentations, will take place Thursday, June 9th,
from 3-7:30pm in room EEB-303.

@ The lecture will be from 3:00-5:00pm,

@ The final presentations will be from 5:00-7:30pm. Feel free to bring
dinner.

e Final project reports due next Wednesday, June 8th, at 11:45pm (on the
web page, dropbox will be posted shortly).

o Final slides due by 1:00pm on Thursday, also via the dropbox.

e Final talks: Plan for 10 minutes of talking about your project (perhaps 8
minutes of lecture and 2 minutes of questions).
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Scratch Paper
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Scratch Paper
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Scratch Paper
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Summary
1

Sources for Today's Lecture

Cunningham, "On Submodular Function Minimization”, 1985.

Bixby, Cunningham, Topkis, " The Partial Order of a Polymatroid
Extreme Point”, 1985.

@ J. Edmonds, “Submodular Functions, Matroids, and Certain
Polyhedra”, 1970.

@ Lovész, “Submodular Functions and Convexity”, 1983.
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