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Announcements

Last lecture, and final presentations, will take place Thursday, June 9th,
from 3-7:30pm in room EEB-303.

The lecture will be from 3:00-5:00pm,

The final presentations will be from 5:00-7:30pm. Feel free to bring
dinner.

Final project reports due next Wednesday, June 8th, at 11:45pm (on the
web page, dropbox will be posted shortly).

Final slides due by 1:00pm on Thursday, also via the dropbox.

Final talks: Plan for 10 minutes of talking about your project (perhaps 8
minutes of lecture and 2 minutes of questions).
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Class Road Map

We need to find one makeup lecture this term.

L1 (3/30):

L2 (4/1):

L3 (4/6):

L4 (4/8):

L5 (4/13):

L6 (4/15):

L7 (4/20):

L8 (4/27):

L9 (4/29):

L10 (5/4):

L11 (5/6): On SFM, polymatroid
member & greedy, Lovász ext.

L12 (5/11): Lovász ext. + polymatroid
props.

L13 (5/13): More polymatroids, start
lattices

L14 (5/18): lattices/submodular

L15 (5/20): lattices, → SFM.

L16 (5/25): → SFM

L17 (5/27): dep/sat

L18 (6/1): exchange capacities

L19 (6/3): SFM algorithm

L20: (6/9): 3-7:30pm (EEB-303)?
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Maximizing y
The nature of SFM will be very similar to the Edmonds’s matroid
partition problem (recall, asking if E can be partitioned into {Ii} each
independent in a matroid Mi ) and the core algorithm is very similar.

Now, from convex polytope theory, any x ∈ Pf can be represented as a
convex combination of at most |E |+ 1 extreme points of Pf (each of
which may be generated by greedy).

We keep a feasible solution to the max version of the problem as a
convex combination of such extreme points.

That is, let I be an index set, and x (i) be an extreme point of Pf for
i ∈ I . We then keep y as

y =
∑
i∈I

λix
(i) (1)

where λi are convex coefficients.

At each step of the algorithm, we either find a larger y , or demonstrate
y ’s optimality by finding a minimizing A.

Start with y = 0, I = {1}, λ1 = 1, and v (1) = 0.
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Saturation Capacity

For x ∈ Pf , and e ∈ E , consider finding

max {α : α ∈ R, x + α1e ∈ Pf } (2)

Identical to:

max {α : (x + α1e)(A) ≤ f (A), ∀A ⊇ {e}} (3)

since B ⊆ E such that e /∈ B have the same value
(x + α1e)(B) = x(B).

Again identical to:

max {α : x(A) + α ≤ f (A),∀A ⊇ {e}} (4)

or

max {α : α ≤ f (A)− x(A),∀A ⊇ {e}} (5)

This max is achieved when

α = ĉ(x ; e)
def
= min {f (A)− x(A),∀A ⊇ {e}} (6)

ĉ(x ; e) is known as the saturation capacity associated with x ∈ Pf and
e.
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α = ĉ(x ; e)
def
= min {f (A)− x(A),∀A ⊇ {e}} (6)
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Saturation Capacity

Thus we have for x ∈ Pf ,

ĉ(x ; e)
def
= min {f (A)− x(A), ∀A ⊇ {e}} (7)

= max {α : α ∈ R, x + α1e ∈ Pf } (8)

We immediately see that for e ∈ E \ sat(x), we have that ĉ(x ; e) > 0.

Also, for e ∈ sat(x), we have that ĉ(x ; e) = 0.

Note that any α with 0 ≤ α ≤ ĉ(x ; e) we have x + α1e ∈ Pf .

We also see that computing ĉ(x ; e) is a form of submodular function
minimization.
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Exchange Capacity
Now consider x ∈ Pf , e ∈ sat(x) and e ′ ∈ dep(x , e) \ {e}

recall that dep(x , e) \ {e} is tight for e ∈ sat(x), so x(e ′) > 0 for
e ′ ∈ dep(x , e) \ {e}.
Thus, for any α > 0, we have x + α1e /∈ Pf .

Consider

max {α : α ∈ R, x + α(1e − 1e′) ∈ Pf } (9)

Identical to:

max {α : α ∈ R, (x + α(1e − 1e′))(A) ≤ f (A),∀A} (10)

Note that if both e, e ′ ∈ A, then α(1e − 1e′)(A) = 0 for any α, so to
make this meaningful, we take A : e ′ /∈ A ⊇ {e}, thus identical to

max
{
α : α ∈ R, (x + α(1e − 1e′))(A) ≤ f (A),∀A ⊇ {e}, e ′ /∈ A

}
(11)

Which is identical to:

max
{
α : α ∈ R, α(1e − 1e′))(A) ≤ f (A)− x(A),∀A ⊇ {e}, e ′ /∈ A

}
(12)
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Exchange Capacity
In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f (A)− x(A), ∀A ⊇ {e}, e ′ /∈ A

}
(13)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f (A)− x(A), ∀A ⊇ {e}, e ′ /∈ A

}
(14)

This max is achieved when

α = ĉ(x ; e, e ′)
def
= min

{
f (A)− x(A),∀A ⊇ {e}, e ′ /∈ A

}
(15)

ĉ(x ; e, e ′) is known as the exchange capacity associated with x ∈ Pf

and e.

For any α with 0 ≤ α ≤ ĉ(x ; e, e ′), we have that x + α(1e − 1e′) ∈ Pf .

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 6



Logistics Review → SFM Scratch Summary

Exchange Capacity
In such case, we get 1e′(A) = 0, thus above identical to

max
{
α : α ∈ R, α1e(A) ≤ f (A)− x(A), ∀A ⊇ {e}, e ′ /∈ A

}
(13)

Restating, we’ve got

max
{
α : α ∈ R, α ≤ f (A)− x(A), ∀A ⊇ {e}, e ′ /∈ A

}
(14)

This max is achieved when
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Logistics Review → SFM Scratch Summary

dep revisited
Given x ∈ Pf , recall distributive lattice of tight sets
D(x) = {A : x(A) = f (A)}

We had that sat(x) =
⋃
{A : A ∈ D(x)} is the “1” element of this

lattice.

Consider the “0” element of D(x), i.e., dry(x)
def
=
⋂
{A : A ∈ D(x)}

We can see dry(x) as the elements that are necessary for tightness.

That is, we can view dry(x) as

dry(x) =
{
e ′ : x(A) < f (A),∀A 63 e ′

}
(16)

Perhaps, then, a better name for dry is nsat(x), for the necessary for
tightness.

This can be read as, for any e ′ ∈ dry(x), any set that does not contain
e ′ is not tight for x .
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Logistics Review → SFM Scratch Summary

dep revisited
Now, given x ∈ Pf , and e ∈ sat(x), recall distributive lattice of
e-containing tight sets D(x , e) = {A : e ∈ A, x(A) = f (A)}

We can define the “1” element of this lattice as
sat(x , e)

def
=
⋃
{A : A ∈ D(x , e)}.

Analogously, we can define the “0” element of this lattice as

dry(x , e)
def
=
⋂
{A : A ∈ D(x , e)}.

We can see dry(x , e) as the elements that are necessary for e-containing
tightness, with e ∈ sat(x).

That is, we can view dry(x , e) as

dry(x , e) =
{
e ′ : x(A) < f (A),∀A 63 e ′, e ∈ A

}
(17)

This can be read as, for any e ′ ∈ dry(x , e), any e-containing set that
does not contain e ′ is not tight for x .

Notice also that dry(x , e) = dep(x , e).
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Logistics Review → SFM Scratch Summary

dep revisited
Now, we have the following equalities for dep(x , e):

dep(x , e) = {e′ : x(A) < f (A),∀A 63 e′, e ∈ A} (18)

= {e′ : ∃α > 0, s.t. α ≤ f (A)− x(A),∀A 63 e′, e ∈ A} (19)

= {e′ : ∃α > 0, s.t. α1e(A) ≤ f (A)− x(A),∀A 63 e′, e ∈ A} (20)

= {e′ : ∃α > 0, s.t. α(1e(A)− 1e′(A)) ≤ f (A)− x(A),∀A 63 e′, e ∈ A}
(21)

= {e′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f (A),∀A 63 e′, e ∈ A}
(22)

Now, 1e(A)− 1e′(A) = 0 if either {e, e ′} ⊆ A, or {e, e ′} ∩ A = ∅.
Also, if e ′ ∈ A but e /∈ A, then
x(A) + α(1e(A)− 1e′(A)) = x(A)− α ≤ f (A) since x ∈ Pf .
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dep revisited
thus, we get the same in the above if we remove the constraint
A 63 e ′, e ∈ A, that is we get

dep(x , e) =
{
e ′ : ∃α > 0, s.t. x(A) + α(1e(A)− 1e′(A)) ≤ f (A),∀A

}
(23)

This is then identical to

dep(x , e) =
{
e ′ : ∃α > 0, s.t. x + α(1e − 1e′) ∈ Pf

}
(24)
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dep and sat

The following picture summarizes the relationships.

sat(x)

dep(x , e)

all of 2 E
 (or at least all of the lattice)

lattice of x-tight sets

lattice of x-tight

 sets w
ith e

dry(x)
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Logistics Review → SFM Scratch Summary

From vertex to vertex

We will need to move from one extreme point to another (adjacent)
extreme point, and will use an augmenting path like approach to do so.

How do we characterize such adjacent extreme points?
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Logistics Review → SFM Scratch Summary

From vertex to vertex

Theorem 3.1

Let x be an extreme point of Pf , and let � be its partial order. Then, each
of the following three operations will yield a new extreme point w:

(a) Let a, b ∈ E and a cover b relative to �, so b @ a. Let
w = x + α1a − α1b with α = f (dep(x , a)− b)− x(dep(x , a)− b).

(b) Let a ∈ E \ sat(x), and let w = x + α1a where
α = f (sat(x) + a)− f (sat(x)).

(c) Let a ∈ supp(x) be maximal (w.r.t. �), and let w − x − x(a)1a.
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Logistics Review → SFM Scratch Summary

From Vertex to Vertex

For (a), let x be generated by Ei = (e1, e2, . . . , ek−1, b, a, ek+2, . . . , ei )
and consider generating w with an order with a and b swapped, i.e.,
E ′i = (e1, e2, . . . , ek−1, a, b, ek+2, . . . , ei )

Then

x(b) = f (e1, . . . , ek−1, b)− f (e1, . . . , ek−1) (25)

x(a) = f (e1, . . . , ek−1, b, a)− f (e1, . . . , ek−1, b) (26)

w(b) = f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, a) (27)

w(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (28)

First, we have (w − x)(e) = 0 for all e /∈ {a, b} since in each case the
differences are the same.
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Logistics Review → SFM Scratch Summary

From Vertex to Vertex

For a we have:

(w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (29)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (30)

For b, we have

(w − x)(b) = f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, a) (31)

− f (e1, . . . , ek−1, b) + f (e1, . . . , ek−1) (32)

so we immediately see that

(w − x)(a) = −(w − x)(b) (33)

So with α = (w − x)(a) we have

w = x + α(1a − 1b) (34)
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Logistics Review → SFM Scratch Summary

From Vertex to Vertex

Moreover, we see that since

(w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (35)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (36)

(37)

and since by submodularity we have

f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1)

≥ f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, b) (38)

We have that

(w − x)(a) ≥ 0 (39)

Now both x and w are extreme points (generated by greedy algorithm),
so any point λx + (1− λ)w is in the base of supp(x)

If all E is used, then each of x and w are in Bf and the convex
combination lies on one of the skeletal edges of Bf .

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 13



Logistics Review → SFM Scratch Summary

From Vertex to Vertex

Moreover, we see that since

(w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (35)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (36)

(37)

and since by submodularity we have

f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1)

≥ f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, b) (38)

We have that

(w − x)(a) ≥ 0 (39)

Now both x and w are extreme points (generated by greedy algorithm),
so any point λx + (1− λ)w is in the base of supp(x)

If all E is used, then each of x and w are in Bf and the convex
combination lies on one of the skeletal edges of Bf .

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 13



Logistics Review → SFM Scratch Summary

From Vertex to Vertex

Moreover, we see that since

(w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (35)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (36)

(37)

and since by submodularity we have

f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1)

≥ f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, b) (38)

We have that

(w − x)(a) ≥ 0 (39)

Now both x and w are extreme points (generated by greedy algorithm),
so any point λx + (1− λ)w is in the base of supp(x)

If all E is used, then each of x and w are in Bf and the convex
combination lies on one of the skeletal edges of Bf .

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 13



Logistics Review → SFM Scratch Summary

From Vertex to Vertex

Moreover, we see that since

(w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (35)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (36)

(37)

and since by submodularity we have

f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1)

≥ f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, b) (38)

We have that

(w − x)(a) ≥ 0 (39)

Now both x and w are extreme points (generated by greedy algorithm),
so any point λx + (1− λ)w is in the base of supp(x)

If all E is used, then each of x and w are in Bf and the convex
combination lies on one of the skeletal edges of Bf .

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 13



Logistics Review → SFM Scratch Summary

From Vertex to Vertex

Moreover, we see that since

(w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (35)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (36)

(37)

and since by submodularity we have

f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1)

≥ f (e1, . . . , ek−1, a, b)− f (e1, . . . , ek−1, b) (38)

We have that

(w − x)(a) ≥ 0 (39)

Now both x and w are extreme points (generated by greedy algorithm),
so any point λx + (1− λ)w is in the base of supp(x)

If all E is used, then each of x and w are in Bf and the convex
combination lies on one of the skeletal edges of Bf .

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 13



Logistics Review → SFM Scratch Summary

From Vertex to Vertex and exchange capacity

Therefore, defining

α = (w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (40)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (41)

(42)

we see that ĉ(x ; a, b) ≥ α

On the other hand, moving from x to w jumps between two extreme
points, and if we moved any less than ĉ(x ; a, b) this wouldn’t be the
case.

Thus,

α = ĉ(x ; a, b)
def
= min {f (A)− x(A),∀A ⊇ {a}, b /∈ A} (43)

Interestingly, this particular submodular minimization problem is easy.

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 14



Logistics Review → SFM Scratch Summary

From Vertex to Vertex and exchange capacity

Therefore, defining

α = (w − x)(a) = f (e1, . . . , ek−1, a)− f (e1, . . . , ek−1) (40)

− f (e1, . . . , ek−1, a, b) + f (e1, . . . , ek−1, b) (41)

(42)
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case.

Thus,
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Logistics Review → SFM Scratch Summary

Bf dominates

Lemma 3.2

Let x ∈ Pf and let T = sat(x). Then there exists y ∈ Bf such that y ≥ x
with y(e) = x(e) for e ∈ T.

Proof.

Consider a form of the greedy procedure, where we update x

Iterate the following procedure, for any e /∈ sat(x)

x ← x + ĉ(x ; e) (44)

Thus, after x update, e, we still have x ∈ Pf .

Moreover, at each update there is a set Se that achieves the min in the
min form of c(x ; e). This set Se is tight for the new x and remains tight
for all subsequent iterations.

Eventually we stop, and since E = T ∪
⋃

e /∈T Se is the union of tight
sets (for x), we see that the resulting x has x ∈ Bf .
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More on dep
Lemma 3.3

Given any extreme point x ∈ Pf , then for any e ∈ supp(x), we have
x(e) = f (dep(x , e))− f (dep(x , e) \ e)

Proof.

Consider all orderings that generate x and choose the one where e
occurs earliest.

Let E = (e1, . . . , ei ) be that order, letting e = ek .

Then dep(x , e) = {e1, . . . , ek}
Since this generates x , we have
x(e) = f (x1, . . . , xk)− f (x1, . . . , xk−1) = f (dep(x , e))− f (dep(x , e) \ e)

Alt proof: We saw earlier that both dep(x , e) and dep(x , e) \ e are
tight, since e is maximal in dep(x , e) using order � on x .

Thus f (dep(x , e)) = x(dep(x , e)) and f (dep(x , e) \ e) = x(dep(x , e) \ e)

This gives the same result.
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Consider all orderings that generate x and choose the one where e
occurs earliest.

Let E = (e1, . . . , ei ) be that order, letting e = ek .

Then dep(x , e) = {e1, . . . , ek}
Since this generates x , we have
x(e) = f (x1, . . . , xk)− f (x1, . . . , xk−1) = f (dep(x , e))− f (dep(x , e) \ e)

Alt proof: We saw earlier that both dep(x , e) and dep(x , e) \ e are
tight, since e is maximal in dep(x , e) using order � on x .

Thus f (dep(x , e)) = x(dep(x , e)) and f (dep(x , e) \ e) = x(dep(x , e) \ e)

This gives the same result.
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The directed graph

Let s, t be distinct elements not in E and define a directed graph similar
to the one we used to solve matroid partition.

Edges may go from s only to nodes in E , they may go between nodes in
E , and edges may to to t only from nodes in E .

At each iteration, we have a y =
∑

j∈I λjx
j where x j is an extremal

point, and {λj}j is convex combination.

At each step we find a better y or show that it is maximizing by finding
a minimizing A (using Edmond’s theorem as certificate of optimality).

Initially we take y = 0 with I = {1}, λ1 = 1 and x1 = 0.

For distinct a, b ∈ E , define

F (a, b) =
{
j ∈ I : a covers b in partial order � of x j

}
(45)

This will be used to produce edges from a to b in order to “augment” y
via an exchange like operation.
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The directed graph

Similarly, for a ∈ E , define

F (a, s) =
{
j ∈ I : a /∈ sat(x j)

}
(46)

Used to produce edges between a and s to augment y via an
“augment” operation (add a new dimension).

Recall the key relationship

max (y(E ) : y ≤ x , y ∈ Pf ) = min (f (A) + x(E \ A) : A ⊆ E ) (47)

where x is the modular function so constructed making f totally
normalized.

We want each step to increase y while still being feasible to the l.h.s.
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The directed graph

We now define the edges and capacities of the graph.

For each a ∈ E with y(a) < x(a), we add an edge (s, a) with capacity
u(s, a) = x(a)− y(a).

Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.

For each pair a, b ∈ E + t, that has F (a, b) 6= ∅, we create an edge
(a, b) in the graph with capacity

u(a, b) =
∑

j∈F (a,b)

λj ĉ(x j ; a, b) (48)

For a, b ∈ E , ĉ(x j ; a, b) is the exchange capacity for a, b under extreme
vector x j .

For a ∈ E and b = t, ĉ(x j ; a, b) = ĉ(x j ; a) is the saturation capacity
associated with x j and a.
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For a ∈ E and b = t, ĉ(x j ; a, b) = ĉ(x j ; a) is the saturation capacity
associated with x j and a.

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 19



Logistics Review → SFM Scratch Summary

The directed graph

We now define the edges and capacities of the graph.

For each a ∈ E with y(a) < x(a), we add an edge (s, a) with capacity
u(s, a) = x(a)− y(a).

Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.

For each pair a, b ∈ E + t, that has F (a, b) 6= ∅, we create an edge
(a, b) in the graph with capacity

u(a, b) =
∑

j∈F (a,b)
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For a ∈ E and b = t, ĉ(x j ; a, b) = ĉ(x j ; a) is the saturation capacity
associated with x j and a.

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 19



Logistics Review → SFM Scratch Summary

The directed graph

We now define the edges and capacities of the graph.

For each a ∈ E with y(a) < x(a), we add an edge (s, a) with capacity
u(s, a) = x(a)− y(a).

Compare before (matroid case): we added such an edge if a is not yet in
one of the independent sets we are creating.

For each pair a, b ∈ E + t, that has F (a, b) 6= ∅, we create an edge
(a, b) in the graph with capacity

u(a, b) =
∑

j∈F (a,b)
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SFM

Theorem 3.4

If there is an s, t dipath in the graph, then there exists a y ′ ∈ Pf with
y ≤ y ′ ≤ x with y ′(E ) > y(E ). If there is no such dipath, then y(A) = f (A)
and y(E \ A) = x(E \ A) for some A ⊆ E.

We prove this over the next few slides.

First, suppose that there exists an s, t dipath and let the vertex set be
s = a0, a1, . . . , am+1 = t.

For each k with 1 ≤ k ≤ m, choose j(k) ∈ F (ak , ak+1).

For j ∈ I , then let n(j) = |{k : j = j(k)}|.
Define θ = min {λj/n(j) : n(j) > 0}.
Define ε′ = min

{
ĉ(x j(k); ak , ak+1) : 1 ≤ k ≤ m

}
.

Define ε = min {ε′, x(a1)− y(a1)}
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ĉ(x j(k); ak , ak+1) : 1 ≤ k ≤ m

}
.

Define ε = min {ε′, x(a1)− y(a1)}

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 20

jab
Pencil



Logistics Review → SFM Scratch Summary

SFM

Now, since ĉ >= 0 and x(a1) > y(a1) by graph construction, we have
ε ≥ 0.

For each 1 ≤ k < m, let zk = x j(k) + ε(1ak − 1ak+1
)

Also let zm = x j(m) + ε1am
Also, for each j ∈ I , let λ′j = λj − θn(j).

we then generate y ′ as

y ′ =
∑
j∈I

λ′jx
j +

∑
k:1≤k≤m

θzk (49)

=
∑
j∈I

λjx
j + θε1a1 (50)

thus, we have y ′ ∈ Pf with y ′ ≤ x , and y ′(E ) > y(E ).
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Also, we have an expression for y ′ as a convex combination of extreme
points of Pf .

Let δk = ĉ(x j(k); ak , ak+1) and let wk = x j(k) + δk(1ak − 1ak+1
) for

1 ≤ k < m

And let wm = x j(k) + ĉ(x j(m); am, am+1)1am .

Then for 1 ≤ k ≤ m, we have that wk is also an extreme point (by
previous theorem).

And so zk = (ε/δk)wk + (1− ε/δk)x j(k).

Therefore, y ′ is a convex combination of at most |I |+ m extreme points
as given in Equation 49.

This can then be reduced in O(n3) time to at most n + 1 extreme points
using Carathéodory’s theorem and associated linear algebra routines.
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And let wm = x j(k) + ĉ(x j(m); am, am+1)1am .

Then for 1 ≤ k ≤ m, we have that wk is also an extreme point (by
previous theorem).

And so zk = (ε/δk)wk + (1− ε/δk)x j(k).

Therefore, y ′ is a convex combination of at most |I |+ m extreme points
as given in Equation 49.

This can then be reduced in O(n3) time to at most n + 1 extreme points
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Next, suppose that no s, t path exists.

Then there is a set A ⊆ E such that no edge (a, b) of the graph has
a ∈ A + s and b /∈ A + s (i.e., a cut).

In such case, we (by construction) have that y(k) = x(k) for k ∈ E \ A.

Also, if it were the case A is x j tight for j ∈ I , then we’d have

y(A) =
∑
j∈I

λjx
j(A) (51)

=
∑
j∈I

λj f (A) (52)

= f (A) (53)

Next we show that such an A is tight.
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Next we show that such an A is tight.

If a ∈ A and j ∈ I , then a ∈ sat(x j) since (a, t) is not an edge.

Moreover, {b : b �j a} ⊆ A since otherwise there is a e ∈ A and
d ∈ E \ A such that e covers d in �j .

But {b : b �j a} is x j -tight.

Therefore, A is the union of x j -tight sets and so itself is x j -tight, as
required.
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Theorem 3.5

If f is integer valued, then so is x, and in such case it is possible to choose
the steps δ in such a way that the running time of the algorithm is
O(Mn6 log(Mn)β) where M is an integer bound on the max value of f ,
n = |E |, and β is the cost of evaluating a submodular function query.
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SFM Summary (from S. Iwata’s slides on SFM)

Submodular Function Minimization 
Grötschel, Lovász, Schrijver (1981, 1988) 

Iwata, Fleischer, Fujishige (2000) Schrijver (2000) 

Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Ellipsoid Method 

Cunningham (1985) 

Iwata, Orlin (2009) 
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Iwata (2003) 

Fleischer, Iwata (2000) 

Orlin (2007) 

Iwata (2002) 

Fully Combinatorial 

Grötschel, Lovász, Schrijver (1981, 1988)

Ellipsoid Method 

Cunningham (1985) 

Bixby,Cunningham,Topkis (1984) 

Edmonds (1965) 

Iwata, Orlin (2009) 
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Announcements

Last lecture, and final presentations, will take place Thursday, June 9th,
from 3-7:30pm in room EEB-303.

The lecture will be from 3:00-5:00pm,

The final presentations will be from 5:00-7:30pm. Feel free to bring
dinner.

Final project reports due next Wednesday, June 8th, at 11:45pm (on the
web page, dropbox will be posted shortly).

Final slides due by 1:00pm on Thursday, also via the dropbox.

Final talks: Plan for 10 minutes of talking about your project (perhaps 8
minutes of lecture and 2 minutes of questions).
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Scratch Paper
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Sources for Today’s Lecture

Cunningham, ”On Submodular Function Minimization”, 1985.

Bixby, Cunningham, Topkis, ”The Partial Order of a Polymatroid
Extreme Point”, 1985.

J. Edmonds, “Submodular Functions, Matroids, and Certain
Polyhedra”, 1970.

Lovász, “Submodular Functions and Convexity”, 1983.

Prof. Jeff Bilmes EE595A/Spr 2011/Submodular Functions – Lecture 19 - June 3st, 2011 page 32


	Logistics
	Review
	 SFM
	Scratch
	Summary



