Prof. Jeff Bilmes

University of Washington, Seattle
Department of Electrical Engineering
Spring Quarter, 2011
http://ssli.ee.washington.edu/~bilmes/ee595a_spring_2011/

Lecture 17 - May 27th, 2011
Announcements

- Last lecture, and final presentations, will take place Thursday, June 9th, from 3-7:30pm. The lecture will be from 3:00-5:00pm, and the final presentations will be from 5:00-7:30pm. Please bring dinner.
We need to find one makeup lecture this term.

- L1 (3/30):
- L2 (4/1):
- L3 (4/6):
- L4 (4/8):
- L5 (4/13):
- L6 (4/15):
- L7 (4/20):
- L8 (4/27):
- L9 (4/29):
- L10 (5/4):
- L13 (5/13): More polymatroids, start lattices
- L14 (5/18): lattices/submodular
- L15 (5/20): lattices, \(\rightarrow \) SFM.
- L16 (5/25): \(\rightarrow \) SFM
- L17 (5/27):
- L18 (6/1):
- L19 (6/3):
- L20: (6/9): 3-7:30pm (EEB-303)?
Consider $x \in P_f$, and consider the following set

$$
\text{DEP}(x) = \{ \text{dep}(x, e) : e \in \text{sat}(x) \} \quad (1)
$$
Consider $x \in P_f$, and consider the following set
\[\text{DEP}(x) = \{ \text{dep}(x, e) : e \in \text{sat}(x) \} \] (1)

So DEP(x) is a set of sets, each element of DEP(x) is the dep(x, e) valuation for some $e \in \text{sat}(x)$.
Consider \(x \in P_f \), and consider the following set
\[
\text{DEP}(x) = \{ \text{dep}(x, e) : e \in \text{sat}(x) \} \tag{1}
\]
So \(\text{DEP}(x) \) is a set of sets, each element of \(\text{DEP}(x) \) is the \(\text{dep}(x, e) \) valuation for some \(e \in \text{sat}(x) \).

Moreover, define a partial order on \(\text{DEP}(x) \) as follows: if \(A, B \in \text{DEP}(x) \), then \(A \preceq B \) iff \(A \subseteq B \).
Consider $x \in P_f$, and consider the following set

$$\text{DEP}(x) = \{\text{dep}(x, e) : e \in \text{sat}(x)\}$$ (1)

So $\text{DEP}(x)$ is a set of sets, each element of $\text{DEP}(x)$ is the $\text{dep}(x, e)$ valuation for some $e \in \text{sat}(x)$.

Moreover, define a partial order on $\text{DEP}(x)$ as follows: if $A, B \in \text{DEP}(x)$, then $A \preceq B$ iff $A \subseteq B$.

We’re going to use this partial order to define a partial order on all elements of $\text{sat}(x)$.
Consider $x \in P_f$, and consider the following set
\[\text{DEP}(x) = \{ \text{dep}(x, e) : e \in \text{sat}(x) \} \]
So $\text{DEP}(x)$ is a set of sets, each element of $\text{DEP}(x)$ is the $\text{dep}(x, e)$ valuation for some $e \in \text{sat}(x)$.
Moreover, define a partial order on $\text{DEP}(x)$ as follows: if $A, B \in \text{DEP}(x)$, then $A \preceq B$ iff $A \subseteq B$.
We’re going to use this partial order to define a partial order on all elements of $\text{sat}(x)$.
Now recall $\mathcal{D}(x) = \{ A : x(A) = f(A) \}$ forms a distributive lattice. What is the natural partial order?
Now in any distributive lattice L, consider its join-irreducibles \mathcal{J} (i.e., any element $A \in \mathcal{J}$ can’t be represented as a join of any other two elements in L).

We saw that if the lattice has length n, then \mathcal{J} will have exactly n elements (in the Boolean case, these are atoms/ground elements), and each element in \mathcal{J} is partially ordered by the lattice partial order.

Moreover, we saw any element can be “generated” by joining the join-irreducible elements.
Now any element in \(\text{DEP}(x) \) (for \(x \) extreme) can’t be represented by the join of two other elements in \(\text{DEP}(x) \), since the minimal tight sets containing \(e \) would not be generated by merging two minimal tight sets containing, say, \(a \), and \(b \), where all of \(a, b, e \) are unequal.

Thus, considering \(\mathcal{D}(x) \) as a distributed lattice, then \(\text{DEP}(x) \) are the join-irreducibles.

And the order \(\preceq \) defined earlier is the natural order w.r.t. this lattice and its join-irreducibles.
Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \) a partial order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).
dep and partial order

Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \) a partial order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).

Recall, the equation for \(x \) is of the form \(x(e) = 0 \) for some \(e \) and \(x(A) = f(A) \) for some \(A \) (see earlier). Specifically, we have that \(x(E \setminus B) = 0 \) and, for \(i = 1 \ldots k \), \(x(B_i) = f(B_i) \).
Let $x \in P_f$ again be an extreme point, and let it be generated by an ordering of $B = (e_1, e_2, \ldots, e_k) \subseteq E$ with $B_i = (b_i, b_2, \ldots, b_i)$ a partial order w.r.t. ordered items B (B and $B_i, \forall i$ are ordered sets).

Recall, the equation for x is of the form $x(e) = 0$ for some e and $x(A) = f(A)$ for some A (see earlier). Specifically, we have that $x(E \setminus B) = 0$ and, for $i = 1 \ldots k$, $x(B_i) = f(B_i)$.

Thus, each of B_i is a tight set.
dep and partial order

Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \) a partial order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).

Recall, the equation for \(x \) is of the form \(x(e) = 0 \) for some \(e \) and \(x(A) = f(A) \) for some \(A \) (see earlier). Specifically, we have that \(x(E \setminus B) = 0 \) and, for \(i = 1 \ldots k \), \(x(B_i) = f(B_i) \).

Thus, each of \(B_i \) is a tight set.

We also have that \(\text{supp}(x) \subseteq B \) due to monotonicity.
Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \) a partial order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).

Recall, the equation for \(x \) is of the form \(x(e) = 0 \) for some \(e \) and \(x(A) = f(A) \) for some \(A \) (see earlier). Specifically, we have that \(x(E \setminus B) = 0 \) and, for \(i = 1 \ldots k \), \(x(B_i) = f(B_i) \).

Thus, each of \(B_i \) is a tight set.

We also have that \(\text{supp}(x) \subseteq B \) due to monotonicity.

Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), there is a tight set containing one but not the other. Specifically, let \(d = e_i \) and \(e = e_j \) with \(j > i \). Then non-zero \(B_i \) (i.e., \(B_i \cap \text{supp}(x) \)) contains \(d \) but not \(e \) (note, vice versa is not true).
Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \) a partial order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).

Recall, the equation for \(x \) is of the form \(x(e) = 0 \) for some \(e \) and \(x(A) = f(A) \) for some \(A \) (see earlier). Specifically, we have that \(x(E \setminus B) = 0 \) and, for \(i = 1 \ldots k \), \(x(B_i) = f(B_i) \).

Thus, each of \(B_i \) is a tight set.

We also have that \(\text{supp}(x) \subseteq B \) due to monotonicity.

Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), there is a tight set containing one but not the other. Specifically, let \(d = e_i \) and \(e = e_j \) with \(j > i \). Then non-zero \(B_i \) (i.e., \(B_i \cap \text{supp}(x) \)) contains \(d \) but not \(e \) (note, vice versa is not true).

Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), we have \(\text{dep}(x, d) \neq \text{dep}(x, e) \).
dep and partial order

- Let \(x \in P_f \) again be an extreme point, and let it be generated by an ordering of \(B = (e_1, e_2, \ldots, e_k) \subseteq E \) with \(B_i = (b_i, b_2, \ldots, b_i) \) a partial order w.r.t. ordered items \(B \) (\(B \) and \(B_i, \forall i \) are ordered sets).

- Recall, the equation for \(x \) is of the form \(x(e) = 0 \) for some \(e \) and \(x(A) = f(A) \) for some \(A \) (see earlier). Specifically, we have that \(x(E \setminus B) = 0 \) and, for \(i = 1 \ldots k \), \(x(B_i) = f(B_i) \).

- Thus, each of \(B_i \) is a tight set.

- We also have that \(\text{supp}(x) \subseteq B \) due to monotonicity.

- Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), there is a tight set containing one but not the other. Specifically, let \(d = e_i \) and \(e = e_j \) with \(j > i \). Then non-zero \(B_i \) (i.e., \(B_i \cap \text{supp}(x) \)) contains \(d \) but not \(e \) (note, vice versa is not true).

- Thus, for any \(d, e \in \text{supp}(x) \subseteq B \), we have \(\text{dep}(x, d) \neq \text{dep}(x, e) \).

- Moreover, for any \(e \in B \), we can have that \(\text{dep}(x, e) = B_i \) where \(e = e_i \). This point is further clarified in the next slide.
dep and partial order (slight digression)

- I.e., x is extreme generated by B, then B_i is a tight set containing e_i.
I.e., x is extreme generated by B, then B_i is a tight set containing e_i. For any $j < i$, B_j does not contain e_i.
dep and partial order (slight digression)

- I.e., \(x \) is extreme generated by \(B \), then \(B_i \) is a tight set containing \(e_i \).
- For any \(j < i \), \(B_j \) does not contain \(e_i \).
- Thus, \(\text{dep}(x, e_i) \) (minimal tight \(e_i \)-containing set) might equal \(B_i \).
dep and partial order (slight digression)

- I.e., x is extreme generated by B, then B_i is a tight set containing e_i.
- For any $j < i$, B_j does not contain e_i.
- Thus, $\text{dep}(x, e_i)$ (minimal tight e_i-containing set) might equal B_i.
- On the other hand, consider the extreme vector $x^{(i)} \in \mathbb{R}^E$ with

$$x^{(i)}(e) = \begin{cases} x(e) & \text{if } e \in B_i \\ 0 & \text{else} \end{cases}$$ \(2\)

so $x^{(i)}$ is just the extreme vector generated by the ordered set B_i.
dep and partial order (slight digression)

- I.e., x is extreme generated by B, then B_i is a tight set containing e_i.
- For any $j < i$, B_j does not contain e_i.
- Thus, $\text{dep}(x, e_i)$ (minimal tight e_i-containing set) might equal B_i.
- On the other hand, consider the extreme vector $x^{(i)} \in \mathbb{R}^E$ with

$$x^{(i)}(e) = \begin{cases}
 x(e) & \text{if } e \in B_i \\
 0 & \text{else}
\end{cases}$$

so $x^{(i)}$ is just the extreme vector generated by the ordered set B_i.
- Therefore, B_j for $j \leq i$ are tight w.r.t. $x^{(i)}$.
dep and partial order (slight digression)

- I.e., x is extreme generated by B, then B_i is a tight set containing e_i.
- For any $j < i$, B_j does not contain e_i.
- Thus, $\text{dep}(x, e_i)$ (minimal tight e_i-containing set) might equal B_i.
- On the other hand, consider the extreme vector $x^{(i)} \in \mathbb{R}^E$ with
 \[
 x^{(i)}(e) = \begin{cases}
 x(e) & \text{if } e \in B_i \\
 0 & \text{else}
 \end{cases}
 \] (2)
 so $x^{(i)}$ is just the extreme vector generated by the ordered set B_i.
- Therefore, B_j for $j \leq i$ are tight w.r.t. $x^{(i)}$.
- Could be other ordered sets (say $B^{(i)}$, which is B_i permuted) that also generates $x^{(i)}$. Let $B^{(i)}_j, j \leq i$ be the first j elements in $B^{(i)}$.
dep and partial order (slight digression)

- I.e., x is extreme generated by B, then B_i is a tight set containing e_i.
- For any $j < i$, B_j does not contain e_i.
- Thus, $\text{dep}(x, e_i)$ (minimal tight e_i-containing set) might equal B_i.
- On the other hand, consider the extreme vector $x^{(i)} \in \mathbb{R}^E$ with

 \[
 x^{(i)}(e) = \begin{cases}
 x(e) & \text{if } e \in B_i \\
 0 & \text{else}
 \end{cases}
 \]

 so $x^{(i)}$ is just the extreme vector generated by the ordered set B_i.
- Therefore, B_j for $j \leq i$ are tight w.r.t. $x^{(i)}$.
- Could be other ordered sets (say $B^{(i)}$, which is B_i permuted) that also generates $x^{(i)}$. Let $B^{(i)}_j$, $j \leq i$ be the first j elements in $B^{(i)}$.
- In $B^{(i)}$, e_i might come at a position $j < i$, so $B^{(i)}_j$ is tight and containing e_i, and $\text{dep}(x, e_i)$ might equal $B^{(i)}_j$, with $B^{(i)}_j \subset B_i$.
dep and partial order (slight digression)

- I.e., \(x \) is extreme generated by \(B \), then \(B_i \) is a tight set containing \(e_i \).
- For any \(j < i \), \(B_j \) does not contain \(e_i \).
- Thus, \(\text{dep}(x, e_i) \) (minimal tight \(e_i \)-containing set) might equal \(B_i \).
- On the other hand, consider the extreme vector \(x^{(i)} \in \mathbb{R}^E \) with
 \[
 x^{(i)}(e) = \begin{cases}
 x(e) & \text{if } e \in B_i \\
 0 & \text{else}
 \end{cases}
 \]
 (2)
 so \(x^{(i)} \) is just the extreme vector generated by the ordered set \(B_i \).
- Therefore, \(B_j \) for \(j \leq i \) are tight w.r.t. \(x^{(i)} \).
- Could be other ordered sets (say \(B^{(i)} \), which is \(B_i \) permuted) that also generates \(x^{(i)} \). Let \(B^{(i)}_j \), \(j \leq i \) be the first \(j \) elements in \(B^{(i)} \).
- In \(B^{(i)} \), \(e_i \) might come at a position \(j < i \), so \(B^{(i)}_j \) is tight and containing \(e_i \), and \(\text{dep}(x, e_i) \) might equal \(B^{(i)}_j \), with \(B^{(i)}_j \subset B_i \).
- On the other hand, \(B_i \not\subset \text{dep}(x, e_i) \) due to \(\text{dep}(x, e_i) \)’s minimality.
Dep and partial order (slight digression)

- I.e., \(x \) is extreme generated by \(B \), then \(B_i \) is a tight set containing \(e_i \).
- For any \(j < i \), \(B_j \) does not contain \(e_i \).
- Thus, \(\text{dep}(x, e_i) \) (minimal tight \(e_i \)-containing set) might equal \(B_i \).
- On the other hand, consider the extreme vector \(x^{(i)} \in \mathbb{R}^E \) with
 \[
 x^{(i)}(e) = \begin{cases}
 x(e) & \text{if } e \in B_i \\
 0 & \text{else}
 \end{cases}
 \]
 \[(2) \]
 so \(x^{(i)} \) is just the extreme vector generated by the ordered set \(B_i \).
- Therefore, \(B_j \) for \(j \leq i \) are tight w.r.t. \(x^{(i)} \).
- Could be other ordered sets (say \(B^{(i)} \), which is \(B_i \) permuted) that also generates \(x^{(i)} \). Let \(B_j^{(i)} \), \(j \leq i \) be the first \(j \) elements in \(B^{(i)} \).
- In \(B^{(i)} \), \(e_i \) might come at a position \(j < i \), so \(B_j^{(i)} \) is tight and containing \(e_i \), and \(\text{dep}(x, e_i) \) might equal \(B_j^{(i)} \), with \(B_j^{(i)} \subset B_i \).
- On the other hand, \(B_i \not\subset \text{dep}(x, e_i) \) due to \(\text{dep}(x, e_i) \)'s minimality.
- Therefore, we see that in general, \(\text{dep}(x, e_i) \subset B_i \).
dep and partial order (slight digression)

Now, while $\text{dep}(x, e_i) \subseteq B_i$, we can be a bit more explicit.
dep and partial order (slight digression)

- Now, while $\text{dep}(x, e_i) \subseteq B_i$, we can be a bit more explicit.
- Let $B(x)$ be set of permutations of B that generate x.
dep and partial order (slight digression)

- Now, while $\text{dep}(x, e_i) \subseteq B_i$, we can be a bit more explicit.
- Let $B(x)$ be set of permutations of B that generate x.
- For $e \in B$ and $B' \in B(x)$, let $1 \leq e(B') \leq |B'|$ be e's position in B'.
Now, while \(\text{dep}(x, e_i) \subseteq B_i \), we can be a bit more explicit.

Let \(B(x) \) be set of permutations of \(B \) that generate \(x \).

For \(e \in B \) and \(B' \in B(x) \), let \(1 \leq e(B') \leq |B'| \) be \(e \)'s position in \(B' \).

Then \(\text{dep}(x, e_i) = B^e_i \) where

\[
B^e_i \in \arg\min_{B' \in B(x)} e_i(B') \quad \text{and also} \quad \left| \arg\min_{B' \in B(x)} e_i(B') \right| = 1 \quad (3)
\]

is ordered, and \(j \) is the position of \(e_i \) in \(B^e_i \). Follows from iff relationship between extremal points and greedy algorithm, and since \(\text{dep}(x, e_i) \) is the unique “0” element of a distributive lattice.
dep and partial order (slight digression)

- Now, while \(\text{dep}(x, e_i) \subseteq B_i \), we can be a bit more explicit.
- Let \(B(x) \) be set of permutations of \(B \) that generate \(x \).
- For \(e \in B \) and \(B' \in B(x) \), let \(1 \leq e(B') \leq |B'| \) be \(e \)'s position in \(B' \).
- Then \(\text{dep}(x, e_i) = B^{e_i}_j \) where

\[
B^{e_i}_j \in \arg\min_{B' \in B(x)} e_i(B') \quad \text{and also} \quad \left| \arg\min_{B' \in B(x)} e_i(B') \right| = 1 \quad (3)
\]

is ordered, and \(j \) is the position of \(e_i \) in \(B^{e_i} \). Follows from iff relationship between extremal points and greedy algorithm, and since \(\text{dep}(x, e_i) \) is the unique “0” element of a distributive lattice.
- Note, for \(e \in \text{sat}(x) \), \(B^e_j \subseteq B \), and \(|B^e_j| = j \).
dep and partial order (slight digression)

- Now, while \(\text{dep}(x, e_i) \subseteq B_i \), we can be a bit more explicit.
- Let \(B(x) \) be set of permutations of \(B \) that generate \(x \).
- For \(e \in B \) and \(B' \in B(x) \), let \(1 \leq e(B') \leq |B'| \) be \(e \)'s position in \(B' \).
- Then \(\text{dep}(x, e_i) = B_{e_i}^j \) where

\[
B_{e_i}^j \in \argmin_{B' \in B(x)} e_i(B') \quad \text{and also} \quad |\argmin_{B' \in B(x)} e_i(B')| = 1 \quad (3)
\]

is ordered, and \(j \) is the position of \(e_i \) in \(B_{e_i}^j \). Follows from iff relationship between extremal points and greedy algorithm, and since \(\text{dep}(x, e_i) \) is the unique “0” element of a distributive lattice.

- Note, for \(e \in \text{sat}(x) \), \(B^e_j \subseteq B \), and \(|B^e_j| = j \).
- Also, for \(d, e \in \text{sat}(x) \), \(\text{dep}(x, d) = B_d^i \subseteq \text{dep}(x, e) = B_e^j \) iff \(d \in \text{dep}(x, e) \).
dep and partial order (slight digression)

- Now, while $\text{dep}(x, e_i) \subseteq B_i$, we can be a bit more explicit.
- Let $B(x)$ be set of permutations of B that generate x.
- For $e \in B$ and $B' \in B(x)$, let $1 \leq e(B') \leq |B'|$ be e’s position in B'.
- Then $\text{dep}(x, e_i) = B_j^{e_i}$ where

 $B_j^{e_i} \in \arg\min_{B' \in B(x)} e_i(B')$ and also $|\arg\min_{B' \in B(x)} e_i(B')| = 1$ (3)

 is ordered, and j is the position of e_i in $B_j^{e_i}$. Follows from iff relationship between extremal points and greedy algorithm, and since $\text{dep}(x, e_i)$ is the unique “0” element of a distributive lattice.

- Note, for $e \in \text{sat}(x)$, $B_j^e \subseteq B$, and $|B_j^e| = j$.

- Also, for $d, e \in \text{sat}(x)$, $\text{dep}(x, d) = B_i^d \subset \text{dep}(x, e) = B_j^e$ iff $d \in \text{dep}(x, e)$.
 - Clearly, $\text{dep}(x, d) \subset \text{dep}(x, e) \Rightarrow d \in \text{dep}(x, e)$.
Now, while \(\text{dep}(x, e_i) \subseteq B_i \), we can be a bit more explicit.

Let \(B(x) \) be set of permutations of \(B \) that generate \(x \).

For \(e \in B \) and \(B' \in B(x) \), let \(1 \leq e(B') \leq |B'| \) be \(e \)'s position in \(B' \).

Then \(\text{dep}(x, e_i) = B^e_i \) where

\[
B^e_i \in \arg\min_{B' \in B(x)} e_i(B') \quad \text{and also} \quad |\arg\min_{B' \in B(x)} e_i(B')| = 1 \quad (3)
\]

is ordered, and \(j \) is the position of \(e_i \) in \(B^e_i \). Follows from iff relationship between extremal points and greedy algorithm, and since \(\text{dep}(x, e_i) \) is the unique “0” element of a distributive lattice.

Note, for \(e \in \text{sat}(x) \), \(B^e_j \subseteq B \), and \(|B^e_j| = j \).

Also, for \(d, e \in \text{sat}(x) \), \(\text{dep}(x, d) = B^d_i \subseteq \text{dep}(x, e) = B^e_j \) iff \(d \in \text{dep}(x, e) \).

Clearly, \(\text{dep}(x, d) \subseteq \text{dep}(x, e) \Rightarrow d \in \text{dep}(x, e) \).

Also \(d \in \text{dep}(x, e) \) means \(\text{dep}(x, d) \subseteq B^e_k \) where \(k = d(B^e) \) is the position of \(d \) in \(B^e \) (since \(B^e_k \) is a tight set containing \(d \)), but it must be that \(k < j \) (since \(B^e_j \) is the smallest tight set containing \(e \) and the \(j \)'th position of \(B^e_j \) is \(e \)).
Also, for polymatroidal f, we saw earlier that for each $e \in \text{sat}(x) \setminus \text{supp}(x)$, the set $\text{supp}(x) + e$ is also tight. This follows since $x(\text{supp}(x) + e) = x(\text{supp}(x))$ but e is dependent on $\text{supp}(x)$ so that $f(\text{supp}(x) + e) = f(\text{supp}(x))$.

This gives further support to the phrase "dependence function", namely $\text{dep}(x, e) \{ e \}$ is the smallest set that renders e dependent (again, like the fundamental circuit of a matroid). Thus, we have 1-1 mapping between all elements of $\text{sat}(x)$ and $\text{DEP}(x) = \{ \text{dep}(x, e) : e \in \text{sat}(x) \}$.

Prof. Jeff Bilmes
EE595A/Spr 2011/Submodular Functions – Lecture 17 - May 27th, 2011
Also, for polymatroidal f, we saw earlier that for each $e \in \text{sat}(x) \setminus \text{supp}(x)$, the set $\text{supp}(x) + e$ is also tight. This follows since $x(\text{supp}(x) + e) = x(\text{supp}(x))$ but e is dependent on $\text{supp}(x)$ so that $f(\text{supp}(x) + e) = f(\text{supp}(x))$.

Now for any point $a, b \in \text{sat}(x) \setminus \text{supp}(x)$, we have that $\text{dep}(x, a) \neq \text{dep}(x, b)$.
Also, for polymatroidal f, we saw earlier that for each $e \in \text{sat}(x) \setminus \text{supp}(x)$, the set $\text{supp}(x) + e$ is also tight. This follows since $x(\text{supp}(x) + e) = x(\text{supp}(x))$ but e is dependent on $\text{supp}(x)$ so that $f(\text{supp}(x) + e) = f(\text{supp}(x))$.

Now for any point $a, b \in \text{sat}(x) \setminus \text{supp}(x)$, we have that $	ext{dep}(x, a) \neq \text{dep}(x, b)$

This follows, since the minimal tight set containing a would never contain b (and in this case, vice versa).
Also, for polymatroidal \(f \), we saw earlier that for each \(e \in \text{sat}(x) \setminus \text{supp}(x) \), the set \(\text{supp}(x) + e \) is also tight. This follows since \(x(\text{supp}(x) + e) = x(\text{supp}(x)) \) but \(e \) is dependent on \(\text{supp}(x) \) so that \(f(\text{supp}(x) + e) = f(\text{supp}(x)) \).

Now for any point \(a, b \in \text{sat}(x) \setminus \text{supp}(x) \), we have that \(\text{dep}(x, a) \neq \text{dep}(x, b) \)

- This follows, since the minimal tight set containing \(a \) would never contain \(b \) (and in this case, vice versa).
- I.e., in such case, we can have for \(a \in \text{sat}(x) \setminus \text{supp}(x) \), \(\text{dep}(x, a) = B_j + a \) for some \(j \), the smallest \(j \) such that \(f(B_j + a) = f(B_j) \), and note that \(a \notin B_j \).
Also, for polymatroidal f, we saw earlier that for each $e \in \text{sat}(x) \setminus \text{supp}(x)$, the set $\text{supp}(x) + e$ is also tight. This follows since $x(\text{supp}(x) + e) = x(\text{supp}(x))$ but e is dependent on $\text{supp}(x)$ so that $f(\text{supp}(x) + e) = f(\text{supp}(x))$.

Now for any point $a, b \in \text{sat}(x) \setminus \text{supp}(x)$, we have that $\text{dep}(x, a) \neq \text{dep}(x, b)$

- This follows, since the minimal tight set containing a would never contain b (and in this case, vice versa).
- I.e., in such case, we can have for $a \in \text{sat}(x) \setminus \text{supp}(x)$, $\text{dep}(x, a) = B_j + a$ for some j, the smallest j such that $f(B_j + a) = f(B_j)$, and note that $a \notin B_j$.

This gives further support to the phrase “dependence function”, namely $\text{dep}(x, e) \setminus \{e\} = B_j$ is the smallest set that renders e dependent (again, like the fundamental circuit of a matroid).
Also, for polymatroidal \(f \), we saw earlier that for each \(e \in \text{sat}(x) \setminus \text{supp}(x) \), the set \(\text{supp}(x) + e \) is also tight. This follows since \(x(\text{supp}(x) + e) = x(\text{supp}(x)) \) but \(e \) is dependent on \(\text{supp}(x) \) so that \(f(\text{supp}(x) + e) = f(\text{supp}(x)) \).

Now for any point \(a, b \in \text{sat}(x) \setminus \text{supp}(x) \), we have that \(\text{dep}(x, a) \neq \text{dep}(x, b) \)

- This follows, since the minimal tight set containing \(a \) would never contain \(b \) (and in this case, vice versa).
- I.e., in such case, we can have for \(a \in \text{sat}(x) \setminus \text{supp}(x) \), \(\text{dep}(x, a) = B_j + a \) for some \(j \), the smallest \(j \) such that \(f(B_j + a) = f(B_j) \), and note that \(a \notin B_j \).

This gives further support to the phrase “dependence function”, namely \(\text{dep}(x, e) \setminus \{e\} = B_j \) is the smallest set that renders \(e \) dependent (again, like the fundamental circuit of a matroid).

Thus, we have 1-1 mapping between all elements of \(\text{sat}(x) \) and \(\text{DEP}(x) = \{\text{dep}(x, e) : e \in \text{sat}(x)\} \).
Therefore, the partial order on \(\text{DEP}(x) \) can be used to define a partial order on \(\text{sat}(x) \).
Therefore, the partial order on \(\text{DEP}(x) \) can be used to define a partial order on \(\text{sat}(x) \).

Now, for \(d, e \in \text{sat}(x) \), when can we have that \(\text{dep}(x, d) \subseteq \text{dep}(x, e) \)?
Therefore, the partial order on \(\text{DEP}(x) \) can be used to define a partial order on \(\text{sat}(x) \).

Now, for \(d, e \in \text{sat}(x) \), when can we have that \(\text{dep}(x, d) \subset \text{dep}(x, e) \)?

We already saw, this happens iff \(d \in \text{dep}(x, e) \).
Therefore, the partial order on $\text{DEP}(x)$ can be used to define a partial order on $\text{sat}(x)$.

Now, for $d, e \in \text{sat}(x)$, when can we have that $\text{dep}(x, d) \subset \text{dep}(x, e)$?

We already saw, this happens iff $d \in \text{dep}(x, e)$.

Thus, we can define a partial order on the elements of $\text{sat}(x)$ as follows:
Therefore, the partial order on \(\text{DEP}(x) \) can be used to define a partial order on \(\text{sat}(x) \).

Now, for \(d, e \in \text{sat}(x) \), when can we have that \(\text{dep}(x, d) \subset \text{dep}(x, e) \)?

We already saw, this happens iff \(d \in \text{dep}(x, e) \).

Thus, we can define a partial order on the elements of \(\text{sat}(x) \) as follows:

Definition 2.1 (partial order on elements of \(\text{sat}(x) \))

For \(d, e \in \text{sat}(x) \), we have

\[d \preceq e \iff d \in \text{dep}(x, e) \] \((4) \)
Thus, we have just proven
Thus, we have just proven

Theorem 3.1

If $x \in P_f$ *is an extreme point, then* \preceq *is a partial order on* $\text{sat}(x)$ *where for* $a, e \in \text{sat}(x)$, *the order* \preceq *is defined by:* $a \preceq e$ *iff* $a \in \text{dep}(x, e)$.
Thus, we have just proven

Theorem 3.1

If $x \in P_f$ *is an extreme point, then* \preceq *is a partial order on* $\text{sat}(x)$ *where for* $a, e \in \text{sat}(x)$, *the order* \preceq *is defined by:* $a \preceq e$ *iff* $a \in \text{dep}(x, e)$.

In fact, we have a stronger result that extreme points are characterized by this construct:
Thus, we have just proven

Theorem 3.1

\[\text{If } x \in P_f \text{ is an extreme point, then } \preceq \text{ is a partial order on } \text{sat}(x) \text{ where for } a, e \in \text{sat}(x), \text{ the order } \preceq \text{ is defined by: } a \preceq e \text{ iff } a \in \text{dep}(x, e). \]

In fact, we have a stronger result that extreme points are characterized by this construct:

Theorem 3.2

\[x \in P_f \text{ is an extreme point, iff } \text{supp}(x) \subseteq \text{sat}(x) \text{ and dep}(x, a) \neq \text{dep}(x, b) \text{ for every pair of distinct points } a, b \in \text{sat}(x). \]
If f is strictly submodular, then the above order \preceq is a total order on $\text{sat}(x)$.
If f is strictly submodular, then the above order \leq is a total order on $\text{sat}(x)$.

Now our goal is to be able to, given an extreme point $x \in P_f$ characterize \leq, and in particular generate \leq and thus characterize all orderings that generate x.
If f is strictly submodular, then the above order \preceq is a total order on $\text{sat}(x)$.

Now our goal is to be able to, given an extreme point $x \in P_f$ characterize \preceq, and in particular generate \preceq and thus characterize all orderings that generate x.

Definition 3.3

Given a partial order \preceq and an ordered set $B = (e_1, e_2, \ldots, e_k)$, then B is **compatible** with \preceq if for all $i < j$ we have that $e_i \preceq e_j$.
The partial order of extreme points

Theorem 3.4

Let \(x \) be an extreme point of \(P_f \) and \(\preceq \) be its partial order. Let \(B \subseteq E \) be an ordered set. Then \(B \) generates \(x \) using the greedy algorithm iff we have \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \) and \(B \) is compatible with \(\preceq \).

Proof.

- Generate \(\Rightarrow \) Compatible: Let \(B \) generate \(x \)

...
The partial order of extreme points

Theorem 3.4

Let \(x \) be an extreme point of \(P_f \) and \(\preceq \) be its partial order. Let \(B \subseteq E \) be an ordered set. Then \(B \) generates \(x \) using the greedy algorithm iff we have \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \) and \(B \) is compatible with \(\preceq \).

Proof.

- Generate \(\Rightarrow \) Compatible: Let \(B \) generate \(x \)
- Then \(\text{supp}(x) \subseteq B \).
Theorem 3.4

Let x be an extreme point of P_f and \preceq be its partial order. Let $B \subseteq E$ be an ordered set. Then B generates x using the greedy algorithm iff we have $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$ and B is compatible with \preceq.

Proof.

- Generate \Rightarrow Compatible: Let B generate x
- Then $\text{supp}(x) \subseteq B$.
- Also, since B is tight, $B \in \mathcal{D}(x)$, so $B \subseteq \text{sat}(x)$.

...
the partial order of extreme points

Theorem 3.4

Let x be an extreme point of P_f and \preceq be its partial order. Let $B \subseteq E$ be an ordered set. Then B generates x using the greedy algorithm iff we have $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$ and B is compatible with \preceq.

Proof.

- Generate \Rightarrow Compatible: Let B generate x
- Then $\text{supp}(x) \subseteq B$.
- Also, since B is tight, $B \in \mathcal{D}(x)$, so $B \subseteq \text{sat}(x)$.
- Moreover, $B_j \in \mathcal{D}(x)$ (for $1 \leq j \leq |B|$), so that $\text{dep}(x, e_j) \subseteq B_j$ for e_j the j'th element of B (note $\text{dep}(x, e_j) \subseteq B_j$ if $(\text{sat}(x) \setminus \text{supp}(x)) \cap B_j = \emptyset$).
The partial order of extreme points

Theorem 3.4

Let x be an extreme point of P_f and \preceq be its partial order. Let $B \subseteq E$ be an ordered set. Then B generates x using the greedy algorithm iff we have $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$ and B is compatible with \preceq.

Proof.

- Generate \Rightarrow Compatible: Let B generate x
- Then $\text{supp}(x) \subseteq B$.
- Also, since B is tight, $B \in \mathcal{D}(x)$, so $B \subseteq \text{sat}(x)$.
- Moreover, $B_j \in \mathcal{D}(x)$ (for $1 \leq j \leq |B|$), so that $\text{dep}(x, e_j) \subseteq B_j$ for e_j the j'th element of B (note $\text{dep}(x, e_j) \subseteq B_j$ if $(\text{sat}(x) \setminus \text{supp}(x)) \cap B_j = \emptyset$).
- But $g \notin B_j$ means $g \notin \text{dep}(x, e_j)$, which means $g \npreceq e_j$, meaning B is compatible with \preceq.

...
The partial order of extreme points

Theorem 3.4

Let \(x \) be an extreme point of \(P_f \) and \(\preceq \) be its partial order. Let \(B \subseteq E \) be an ordered set. Then \(B \) generates \(x \) using the greedy algorithm iff we have \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \) and \(B \) is compatible with \(\preceq \).

Proof.

- Conversely (Compatible \(\Rightarrow \) Generate): Suppose ordering \(B \) is compatible with \(\preceq \) and that \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \).
The partial order of extreme points

Theorem 3.4

Let x be an extreme point of P_f and \preceq be its partial order. Let $B \subseteq E$ be an ordered set. Then B generates x using the greedy algorithm iff we have $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$ and B is compatible with \preceq.

Proof.

- Conversely (Compatible \Rightarrow Generate): Suppose ordering B is compatible with \preceq and that $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$.

- Then for each j (with $1 \leq j \leq |B|$), and for each $e \in B_j$, we have $\text{dep}(x, e) \subseteq B_j$.

...
The partial order of extreme points

Theorem 3.4

Let \(x \) be an extreme point of \(P_f \) and \(\preceq \) be its partial order. Let \(B \subseteq E \) be an ordered set. Then \(B \) generates \(x \) using the greedy algorithm iff we have \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \) and \(B \) is compatible with \(\preceq \).

Proof.

- Conversely (Compatible \(\Rightarrow \) Generate): Suppose ordering \(B \) is compatible with \(\preceq \) and that \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \).

- Then for each \(j \) (with \(1 \leq j \leq |B| \)), and for each \(e \in B_j \), we have \(\text{dep}(x, e) \subseteq B_j \).

- Thus, \(B_j \) is the union of tight sets (since each of \(\text{dep}(x, e) \) is tight), so that \(B_j \) is also tight (unions of tight sets are tight).

...
The partial order of extreme points

Theorem 3.4

Let x be an extreme point of P_f and \preceq be its partial order. Let $B \subseteq E$ be an ordered set. Then B generates x using the greedy algorithm iff we have $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$ and B is compatible with \preceq.

Proof.

- Conversely (Compatible \Rightarrow Generate): Suppose ordering B is compatible with \preceq and that $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$.

- Then for each j (with $1 \leq j \leq |B|$), and for each $e \in B_j$, we have $\text{dep}(x, e) \subseteq B_j$.

- Thus, B_j is the union of tight sets (since each of $\text{dep}(x, e)$ is tight), so that B_j is also tight (unions of tight sets are tight).

- Thus B is tight and thus x is generated by the ordering given in B (by the greedy algorithm).
Extreme Points and Greedy

- We immediately get the following corollary:
We immediately get the following corollary:

Corollary 3.5

*If x is an extreme point of P_f and $B \subseteq E$ is given such that $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$, then x is generated using greedy by some ordering of B.***
Extreme Points and Greedy

- We immediately get the following corollary:

Corollary 3.5

If \(x \) *is an extreme point of* \(P_f \) *and* \(B \subseteq E \) *is given such that* \(\text{supp}(x) \subseteq B \subseteq \text{sat}(x) \), *then* \(x \) *is generated using greedy by some ordering of* \(B \).

- this is a more satisfying way to given an extreme point show that the greedy algorithm can generate it than to resort to the polyhedral \(cv = \max(cx : x \in P_f) \) for an appropriate direction \(c \).
Extreme Points and Greedy

- We immediately get the following corollary:

Corollary 3.5

If x *is an extreme point of* P_f *and* $B \subseteq E$ *is given such that* $\text{supp}(x) \subseteq B \subseteq \text{sat}(x)$, *then* x *is generated using greedy by some ordering of* B.

- This is a more satisfying way to given an extreme point show that the greedy algorithm can generate it than to resort to the polyhedral $cv = \max(cx : x \in P_f)$ for an appropriate direction c.
- Moreover, we can produce an efficient $O(|E|^2)$ algorithm that can produce \preceq for any extreme point x of P_f.
Extreme Points and Greedy

- We immediately get the following corollary:

Corollary 3.5

If \(x \) is an extreme point of \(P_f \) and \(B \subseteq E \) is given such that\(
\[\text{supp}(x) \subseteq B \subseteq \text{sat}(x), \]
then \(x \) is generated using greedy by some ordering of \(B \).*

- This is a more satisfying way to given an extreme point show that the greedy algorithm can generate it than to resort to the polyhedral

\[cv = \max(cx : x \in P_f) \]

for an appropriate direction \(c \).

- Moreover, we can produce an efficient \(O(|E|^2) \) algorithm that can produce \(\preceq \) for any extreme point \(x \) of \(P_f \).

- The algorithm does so by, for each \(e \in \text{sat}(x) \), producing the sets

\[\text{dep}(x, e) \]

that define the order (or otherwise terminating by saying that \(x \) is not an extreme point).
Extreme point testing and partial order generation

input: Vector $x \in \mathbb{R}^E$, polymatroid function f on E.

output: That x is not extreme point, or if it is, minimal tight sets $\text{dep}(x, e)$ for $e \in \text{sat}(x)$ thus defining \preceq. Moreover, $\text{dep}(x, e_j) = A_j$ for $1 \leq j \leq n$ where $n = |\text{sat}(x)|$.

1. $j \leftarrow 0$; $B \leftarrow \emptyset$
2. while true do
3. $j \leftarrow j + 1$
4. if $\exists e \in E \setminus B$ with $x(B + e) = f(B + e)$ then
5. $B \leftarrow B + e$; $e_j \leftarrow e$
6. else
7. STOP, if $\text{supp}(x) \subseteq B$ then x is extreme, otherwise not.
8. $A_j \leftarrow B$; $k \leftarrow j - 1$
9. while $x(A_j - e_k) = f(A_j - e_k)$ and $k > 0$ do
10. $A_j = A_j - e_k$; $k \leftarrow k - 1$
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
- Lines 9-10 remove elements from \(A_j \) while retaining tightness (thus achieving \(\text{dep}(x, e_j) \)).
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
- Lines 9-10 remove elements from A_j while retaining tightness (thus achieving $\text{dep}(x, e_j)$).
- Note, algorithm uses f only to test the tightness of a set relative to a vector x, nothing more (i.e., line 4 could be a query on if $B + e$ is tight).
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
- Lines 9-10 remove elements from A_j while retaining tightness (thus achieving $\text{dep}(x, e_j)$).
- Note, algorithm uses f only to test the tightness of a set relative to a vector x, nothing more (i.e., line 4 could be a query on if $B + e$ is tight).
- We can generate all orderings consistent with a partial ordering using an algorithm by Knuth/Szwarcfiter-1974.
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
- Lines 9-10 remove elements from A_j while retaining tightness (thus achieving $\text{dep}(x, e_j)$).
- Note, algorithm uses f only to test the tightness of a set relative to a vector x, nothing more (i.e., line 4 could be a query on if $B + e$ is tight).
- We can generate all orderings consistent with a partial ordering using an algorithm by Knuth/Szwarcfiter-1974.
- Line 1 is $O(|E|)$, and nested lines 4 (and 9) are each $O(|E|)$, so algorithm runs in $O(|E|^2)$ doing that many function evals.
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
- Lines 9-10 remove elements from A_j while retaining tightness (thus achieving $\text{dep}(x, e_j)$).
- Note, algorithm uses f only to test the tightness of a set relative to a vector x, nothing more (i.e., line 4 could be a query on if $B + e$ is tight).
- We can generate all orderings consistent with a partial ordering using an algorithm by Knuth/Szwarcfiter-1974.
- Line 1 is $O(|E|)$, and nested lines 4 (and 9) are each $O(|E|)$, so algorithm runs in $O(|E|^2)$ doing that many function evals.
- Thus, extreme point testing is fundamentally computationally simpler than arbitrary membership testing (recall, to test if $x \in P_f$ in general, we needed submodular function minimization).
On partial order algorithm

- Lines 4-5 just greedily add tight points, breaking ties arbitrarily.
- Lines 9-10 remove elements from A_j while retaining tightness (thus achieving $\text{dep}(x, e_j)$).
- Note, algorithm uses f only to test the tightness of a set relative to a vector x, nothing more (i.e., line 4 could be a query on if $B + e$ is tight).
- We can generate all orderings consistent with a partial ordering using an algorithm by Knuth/Szwarcfiter-1974.
- Line 1 is $O(|E|)$, and nested lines 4 (and 9) are each $O(|E|)$, so algorithm runs in $O(|E|^2)$ doing that many function evals.
- Thus, extreme point testing is fundamentally computationally simpler than arbitrary membership testing (recall, to test if $x \in P_f$ in general, we needed submodular function minimization).
- To determine, only, if a given x is extreme, we can delete lines 8-10 (having same run time).
Maximal in a tight set

Theorem 3.6

Given an extreme point $x \in P_f$, with A tight for x, and if given order \preceq element $e \in A$ is maximal, then $A - e$ is also tight.

Proof.

- If e is maximal in A w.r.t. \preceq, then there exists no $a \in A \setminus \{e\}$, such that $e \in \text{dep}(x, a)$.
Maximal in a tight set

Theorem 3.6

Given an extreme point \(x \in P_f \), *with* \(A \) *tight for* \(x \), *and if given order* \(\preceq \) *element* \(e \in A \) *is maximal, then* \(A - e \) *is also tight.*

Proof.

- If \(e \) is maximal in \(A \) w.r.t. \(\preceq \), then there exists no \(a \in A \setminus \{ e \} \), such that \(e \in \text{dep}(x, a) \).
- Thus, \(\text{dep}(x, a) \subseteq A \setminus \{ e \} \) for all \(a \in A \setminus \{ e \} \).
Maximal in a tight set

Theorem 3.6

Given an extreme point $x \in P_f$, with A tight for x, and if given order \preceq element $e \in A$ is maximal, then $A - e$ is also tight.

Proof.

- If e is maximal in A w.r.t. \preceq, then there exists no $a \in A \setminus \{e\}$, such that $e \in \text{dep}(x, a)$.
- Thus, $\text{dep}(x, a) \subseteq A \setminus \{e\}$ for all $a \in A \setminus \{e\}$.
- Now, since $\text{dep}(x, a)$ is the smallest x-tight set containing a and $\text{dep}(x, a) \subseteq A \setminus \{e\}$, we have

$$
\bigcup_{a \in A \setminus \{e\}} \text{dep}(x, a) = A \setminus \{e\}
$$

(5)

...
Maximal in a tight set

Theorem 3.6

Given an extreme point $x \in P_f$, with A tight for x, and if given order \preceq element $e \in A$ is maximal, then $A - e$ is also tight.

Proof.

- If e is maximal in A w.r.t. \preceq, then there exists no $a \in A \setminus \{e\}$, such that $e \in \text{dep}(x, a)$.

- Thus, $\text{dep}(x, a) \subseteq A \setminus \{e\}$ for all $a \in A \setminus \{e\}$.

- Now, since $\text{dep}(x, a)$ is the smallest x-tight set containing a and $\text{dep}(x, a) \subseteq A \setminus \{e\}$, we have

$$
\bigcup_{a \in A \setminus \{e\}} \text{dep}(x, a) = A \setminus \{e\}
$$

(5)

- Since the union (and intersection) of tight sets is tight, we have that $A \setminus \{e\}$ is therefore also tight.
Maximal in a tight set

Theorem 3.6

Given an extreme point \(x \in P_f \), *with* \(A \) *tight for* \(x \), *and if given order* \(\leq \) *element* \(e \in A \) *is maximal, then* \(A - e \) *is also tight.*

We also have

Corollary 3.7

For all \(e \in \text{sat}(x) \), *we have that* \(\text{dep}(x, e) \setminus e \) *is also tight.*

Proof.
Maximal in a tight set

Theorem 3.6

Given an extreme point $x \in P_f$, with A tight for x, and if given order \preceq element $e \in A$ is maximal, then $A - e$ is also tight.

We also have

Corollary 3.7

For all $e \in \text{sat}(x)$, we have that $\text{dep}(x, e) \setminus e$ is also tight.

Proof.

- $\text{dep}(x, e)$ is tight, and recall that there is some ordered set B_j^e with $\text{dep}(x, e) = B_j^e$ whose's last (j'th) item is e.

Maximal in a tight set

Theorem 3.6

Given an extreme point $x \in P_f$, *with* A *tight for* x, *and if given order* \preceq *element* $e \in A$ *is maximal, then* $A - e$ *is also tight.*

We also have

Corollary 3.7

For all $e \in \text{sat}(x)$, *we have that* $\text{dep}(x, e) \setminus e$ *is also tight.*

Proof.

- $\text{dep}(x, e)$ *is tight, and recall that there is some ordered set* B^e_j *with* $\text{dep}(x, e) = B^e_j$ *whose’s last* $(j’th)$ *item is* e.

- This theorem and corollary allow us to prove that the above algorithm gives us not only the minum min sets containing e but the minimum tight sets with e, *i.e.,* $\text{dep}(x, e)$.
Maximal in a tight set

Theorem 3.6

Given an extreme point \(x \in P_f \), with \(A \) tight for \(x \), and if given order \(\leq \) element \(e \in A \) is maximal, then \(A - e \) is also tight.

We also have

Corollary 3.7

For all \(e \in \text{sat}(x) \), we have that \(\text{dep}(x, e) \setminus e \) is also tight.

Proof.

- \(\text{dep}(x, e) \) is tight, and recall that there is some ordered set \(B_j^e \) with \(\text{dep}(x, e) = B_j^e \) whose’s last \((j’th)\) item is \(e \).

- This theorem and corollary allow us to prove that the above algorithm gives us not only the minum min sets containing \(e \) but the minimum tight sets with \(e \), i.e., \(\text{dep}(x, e) \).
Maximal in a tight set

- Also, for any $x \in P_f$, and $\forall e \in \text{sat}(x)$, we have that

$$\text{dep}(x, e) \setminus \{e\} \subseteq \text{supp}(x)$$ \hspace{1cm} (6)

- This follows since suppose $\exists e' \in \text{dep}(x, e) \setminus \{e\}$ such that $x(e') = 0$.

- Then, since $f(e') > 0$, in such case $\text{dep}(x, e)$ wouldn’t be minimally e-containing tight, since we’d have $x(\text{dep}(x, e) \setminus \{e'\}) = x(\text{dep}(x, e)) = f(\text{dep}(x, e))$.

On Greedy, and linear programming max

Theorem 3.8

Let $y \in P_f$ be an extreme point, and let \preceq be the partial order of y. Let $c \in \mathbb{R}^E$. Then, y is the solution in:

$$c^T y = \max \{ c^T x : x \in P_f \} \quad (7)$$

iff the following three conditions hold:

1. $c(e) \geq 0$ for every $e \in \text{supp}(y)$
2. $c(e) \leq 0$ for every $e \in E \setminus \text{sat}(y)$, and
3. For $d, e \in \text{sat}(y)$ and $d \preceq e$ imply that $c(d) \geq c(e)$.
Another revealing theorem

Theorem 3.9

Let f be a polymatroid function and suppose that E can be partitioned into (E_1, E_2, \ldots, E_k) such that $f(A) = \sum_{i=1}^{k} f(A \cap E_i)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_f = \{x \in P_f : x(E) = f(E)\}$ (the E-tight subset of P_f) has dimension $|E| - k$.
Another revealing theorem

Theorem 3.9

Let f be a polymatroid function and suppose that E can be partitioned into (E_1, E_2, \ldots, E_k) such that $f(A) = \sum_{i=1}^{k} f(A \cap E_i)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_f = \{x \in P_f : x(E) = f(E)\}$ (the E-tight subset of P_f) has dimension $|E| - k$.

Thus, “independence” between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
Another revealing theorem

Theorem 3.9

Let f be a polymatroid function and suppose that E can be partitioned into (E_1, E_2, \ldots, E_k) such that $f(A) = \sum_{i=1}^{k} f(A \cap E_i)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_f = \{x \in P_f : x(E) = f(E)\}$ (the E-tight subset of P_f) has dimension $|E| - k$.

- Thus, “independence” between disjoint A and B (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point $x \in B_f$ is a convex combination of at most $|E| - k + 1$ vertices of B_f.

Theorem 3.9

Let \(f \) be a polymatroid function and suppose that \(E \) can be partitioned into \((E_1, E_2, \ldots, E_k)\) such that \(f(A) = \sum_{i=1}^{k} f(A \cap E_i) \) for all \(A \subseteq E \), and \(k \) is maximum. Then the base polytope \(B_f = \{ x \in P_f : x(E) = f(E) \} \) (the \(E \)-tight subset of \(P_f \)) has dimension \(|E| - k \).

- Thus, “independence” between disjoint \(A \) and \(B \) (leading to a rectangular projection of the polymatroid polytope) reduces the dimension of the base polytope, as expected.
- Thus, any point \(x \in B_f \) is a convex combination of at most \(|E| - k + 1 \) vertices of \(B_f \).
- And if \(f \) does not have such independence, dimension of \(B_f \) is \(|E| - 1 \) and any point \(x \in B_f \) is a convex combination of at most \(|E| \) vertices of \(B_f \).
Another revealing theorem

Theorem 3.9

Let f be a polymatroid function and suppose that E can be partitioned into (E_1, E_2, \ldots, E_k) such that $f(A) = \sum_{i=1}^{k} f(A \cap E_i)$ for all $A \subseteq E$, and k is maximum. Then the base polytope $B_f = \{ x \in P_f : x(E) = f(E) \}$ (the E-tight subset of P_f) has dimension $|E| - k$.

- Example f with independence between $A = \{e_2, e_3\}$ and $B = \{e_1\}$, i.e., $e_1 \perp \{e_2, e_3\}$, with B_f marked in green.
Given polymatroid function f, the base polytope $B_f = \{ x \in \mathbb{R}_+^E : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \}$ always exists.
Base polytope existence

- Given polymatroid function f, the base polytope $B_f = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \}$ always exists.

- Consider any order of E and generate a vector x by this order (i.e., $x(e_1) = f(\{e_1\})$, $x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\})$, and so on).
Given polymatroid function f, the base polytope $B_f = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \}$ always exists.

Consider any order of E and generate a vector x by this order (i.e., $x(e_1) = f(\{e_1\})$, $x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\})$, and so on).

From past lectures, we now know that:
Base polytope existence

- Given polymatroid function f, the base polytope

 $$B_f = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \quad \forall A \subseteq E, \text{ and } x(E) = f(E) \}$$

 always exists.

- Consider any order of E and generate a vector x by this order (i.e.,

 $$x(e_1) = f(\{e_1\}), \quad x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\}), \text{ and so on}.$$

- From past lectures, we now know that:

 (1) $x \in P_f$
Base polytope existence

Given polymatroid function f, the base polytope

$$B_f = \left\{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \text{ and } x(E) = f(E) \right\}$$
always exists.

Consider any order of E and generate a vector x by this order (i.e.,

$$x(e_1) = f(\{e_1\}), \ x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\}), \text{ and so on).}$$

From past lectures, we now know that:

1. $x \in P_f$
2. x is an extreme point in P_f
Base polytope existence

- Given polymatroid function f, the base polytope $B_f = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \forall A \subseteq E, \text{ and } x(E) = f(E) \}$ always exists.

- Consider any order of E and generate a vector x by this order (i.e., $x(e_1) = f(\{e_1\}), x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\})$, and so on).

- From past lectures, we now know that:

 1. $x \in P_f$
 2. x is an extreme point in P_f
 3. Since x is generated using an ordering of all of E, we have that $x(E) = f(E)$.
Given polymatroid function f, the base polytope $B_f = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \forall A \subseteq E, \text{ and } x(E) = f(E) \}$ always exists.

Consider any order of E and generate a vector x by this order (i.e., $x(e_1) = f(\{e_1\}), x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\})$, and so on).

From past lectures, we now know that:

1. $x \in P_f$
2. x is an extreme point in P_f
3. Since x is generated using an ordering of all of E, we have that $x(E) = f(E)$.

Thus $x \in B_f$, and B_f is never empty.
Base polytope existence

- Given polymatroid function f, the base polytope $B_f = \{ x \in \mathbb{R}^E_+ : x(A) \leq f(A) \ \forall A \subseteq E, \ \text{and} \ x(E) = f(E) \}$ always exists.

- Consider any order of E and generate a vector x by this order (i.e., $x(e_1) = f(\{e_1\})$, $x(e_2) = f(\{e_1, e_2\}) - f(\{e_1\})$, and so on).

- From past lectures, we now know that:

 1. $x \in P_f$
 2. x is an extreme point in P_f
 3. Since x is generated using an ordering of all of E, we have that $x(E) = f(E)$.

- Thus $x \in B_f$, and B_f is never empty.

- Moreover, in this case, x is a vertex of B_f since it is extremal.
Now, for any $A \subseteq E$, we can generate a particular point in B_f.
Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where $n = |E|$, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with $k = |A|$.
Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where $n = |E|$, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with $k = |A|$.
- Then, we have generated a point x (a vertex, no less) in B_f such that $x(A) = f(A)$.

In words, B_f intersects all "multi-axis orthogonal" subsets of R^E_+.
Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where $n = |E|$, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with $k = |A|$.
- Then, we have generated a point x (a vertex, no less) in B_f such that $x(A) = f(A)$.
- Thus, for any A, we have

$$B_f \cap \left\{ x \in \mathbb{R}_+^E : x(A) = f(A) \right\} \neq \emptyset$$

(8)
Base polytope property

- Now, for any $A \subseteq E$, we can generate a particular point in B_f
- That is, choose the ordering of $E = (e_1, e_2, \ldots, e_n)$ where $n = |E|$, and where $E_i = (e_1, e_2, \ldots, e_i)$, so that we have $E_k = A$ with $k = |A|$.
- Then, we have generated a point x (a vertex, no less) in B_f such that $x(A) = f(A)$.
- Thus, for any A, we have

$$B_f \cap \left\{ x \in \mathbb{R}_+^E : x(A) = f(A) \right\} \neq \emptyset \quad (8)$$

- In words, B_f intersects all “multi-axis orthogonal” subsets of \mathbb{R}_+^E.

Polytope example 1

Observe: P_f (at two views):

Is this a polymatroidal polytope?

No, B_f doesn’t intersect sets of the form $\{x: x(e) = f(e)\}$ for $e \in E$. This was generated using function $g(0) = 0$, $g(1) = 3$, $g(2) = 4$, and $g(3) = 5$. Then $f(S) = g(|S|)$ is not submodular since (e.g.) $f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 4 + 4 = 8$ but $f(\{e_1, e_2, e_3\}) + f(\{e_1\}) = 5 + 3 = 8$.5.
Polytope example 1

- Observe: P_f (at two views):

- Is this a polymatroidal polytope?

- Is this a polymatroidal polytope?
Polytope example 1

- Observe: P_f (at two views):

Is this a polymatroidal polytope?
- No, "B_f" doesn't intersect sets of the form $\{x : x(e) = f(e)\}$ for $e \in E$.

Prof. Jeff Bilmes
Polytope example 1

- Observe: P_f (at two views):

Is this a polymatroidal polytope?
No, “B_f” doesn’t intersect sets of the form \{x : x(e) = f(e)\} for $e \in E$.

This was generated using function $g(0) = 0$, $g(1) = 3$, $g(2) = 4$, and $g(3) = 5.5$. Then $f(S) = g(|S|)$ is not submodular since (e.g.)
\[
f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 4 + 4 = 8 \text{ but}
\]
Polytope example 2

- Observe: P_f (at two views):

Is this a polymatroidal polytope?

No, B_f (which would be a single point in this case) doesn't intersect sets of the form

\{x : x(e) = f(e)\}

for $e \in E$.

This was generated using function $g(0) = 0$, $g(1) = 1$, $g(2) = 1.8$, and $g(3) = 3$. Then $f(S) = g(|S|)$ is not submodular since (e.g.)

$f(\{e_1, e_3\}) + f(\{e_1, e_2\}) = 1.8 + 1.8 = 3.6$ but $f(\{e_1, e_2, e_3\}) + f(\{e_1\}) = 3 + 1 = 4.$
Polytope example 2

- Observe: P_f (at two views):

- Is this a polymatroidal polytope?
Polytope example 2

- Observe: \(P_f \) (at two views):

- Is this a polymatroidal polytope?
- No, \(B_f \) (which would be a single point in this case) doesn’t intersect sets of the form \(\{ x : x(e) = f(e) \} \) for \(e \in E \).
Polytope example 2

- Observe: P_f (at two views):

Is this a polymatroidal polytope?

No, “B_f” (which would be a single point in this case) doesn’t intersect sets of the form \(\{x : x(e) = f(e)\} \) for \(e \in E \).

This was generated using function \(g(0) = 0, g(1) = 1, g(2) = 1.8, \) and \(g(3) = 3 \). Then \(f(S) = g(|S|) \) is not submodular since (e.g.)

\[
\begin{align*}
 f(\{e_1, e_3\}) + f(\{e_1, e_2\}) &= 1.8 + 1.8 = 3.6 \\
 f(\{e_1, e_2, e_3\}) + f(\{e_1\}) &= 3 + 1 = 4 .
\end{align*}
\]
First, given any submodular function g, construct modular function $m : E \rightarrow \mathbb{R}$ such that $m(e) = g(E \setminus \{e\}) - g(E)$.

Note that

$$m(e) = g(E \setminus \{e\}) - g(E)$$
$$= -[g(E) - g(E \setminus e)]$$
$$= -[\text{gain of adding } e \text{ to } E \setminus e]$$
$$= -[\text{smallest possible gain/value of } e \text{ in any context}]$$

The last equality follows from submodularity.
First, given any submodular function g, construct modular function $m : E \rightarrow \mathbb{R}$ such that $m(e) = g(E \setminus \{e\}) - g(E)$.

Then construct a new function $f : 2^E \rightarrow \mathbb{R}_+$ as

$$f(A) = g(A) + m(A) - g(\emptyset)$$ (13)
First, given any submodular function g, construct modular function $m : E \rightarrow \mathbb{R}$ such that $m(e) = g(E \setminus \{e\}) - g(E)$.

Then construct a new function $f : 2^E \rightarrow \mathbb{R}_+$ as

$$f(A) = g(A) + m(A) - g(\emptyset) \quad (13)$$

Then $f(\emptyset) = 0$, so f is normalized.
First, given any submodular function g, construct modular function $m : E \rightarrow \mathbb{R}$ such that $m(e) = g(E \setminus \{e\}) - g(E)$.

Then construct a new function $f : 2^E \rightarrow \mathbb{R}_+$ as

$$f(A) = g(A) + m(A) - g(\emptyset)$$ \hspace{1cm} (13)

Then $f(\emptyset) = 0$, so f is normalized.

Also, f is monotone non-decreasing (and thus non-negative) and submodular. It is submodular since sum of submodular and modular. Monotone non-decreasing follows since for $v \notin B$,

$$f(B + v) - f(B) = g(B + v) - g(B) + m(v)$$ \hspace{1cm} (14)

$$= g(B + v) - g(B) + g(E - v) - g(E)$$ \hspace{1cm} (15)

$$\geq 0$$ \hspace{1cm} (16)

since, by submodularity, $g(B + v) - g(B) \geq g(E) - g(E - v)$.
SFM for arbitrary submodular g (from lecture 11)

- Also, if we wish to minimize arbitrary submodular g, then given $f(A) = g(A) + m(A) - g(\emptyset)$, we can just minimize $f - m$ since $g(\emptyset)$ is a constant.
Also, if we wish to minimize arbitrary submodular g, then given $f(A) = g(A) + m(A) - g(\emptyset)$, we can just minimize $f - m$ since $g(\emptyset)$ is a constant.

So now we have a difference of a polymatroid function f and a modular function m.
Dealing with $m \in \mathbb{R}^E_+$

So now we reduced the problem of SFM to that of minimizing a difference between a polymatroid function f and a modular function m (i.e., $\min_{A \subseteq E} f(A) - m(A)$).
Dealing with $m \in \mathbb{R}^E_+$

- So now we reduced the problem of SFM to that of minimizing a difference between a polymatroid function f and a modular function m (i.e., $\min_{A \subseteq E} f(A) - m(A)$).

- Is $m \in \mathbb{R}^E_+$?
Dealing with $m \in \mathbb{R}_+^E$

- So now we reduced the problem of SFM to that of minimizing a difference between a polymatroid function f and a modular function m (i.e., $\min_{A \subseteq E} f(A) - m(A)$).

- Is $m \in \mathbb{R}_+^E$?

No, not in general, but for any e such that $m(e) < 0$, e can’t be a minimizer of $f - m$ since, assuming that A minimizes $f(A) - m(A)$ and $e \in A$ is such that $m(e) < 0$, then we have that $f(A') - m(A') < f(A) - m(A)$ where $A' = A \setminus \{e\}$.
Dealing with $m \in \mathbb{R}_+^E$

- So now we reduced the problem of SFM to that of minimizing a difference between a polymatroid function f and a modular function m (i.e., $\min_{A \subseteq E} f(A) - m(A)$).

- Is $m \in \mathbb{R}_+^E$?

- No, not in general, but for any e such that $m(e) < 0$, e can’t be a minimizer of $f - m$ since, assuming that A minimizes $f(A) - m(A)$ and $e \in A$ is such that $m(e) < 0$, then we have that $f(A') - m(A') < f(A) - m(A)$ where $A' = A \setminus \{e\}$.

- This follows since f is monotone non-decreasing, and $m(A) = m(A') + m(e)$, so $m(A') > m(A)$.
Dealing with $m \in \mathbb{R}_+^E$

- So now we reduced the problem of SFM to that of minimizing a difference between a polymatroid function f and a modular function m (i.e., $\min_{A \subseteq E} f(A) - m(A)$).
- Is $m \in \mathbb{R}_+^E$?
- No, not in general, but for any e such that $m(e) < 0$, e can’t be a minimizer of $f - m$ since, assuming that A minimizes $f(A) - m(A)$ and $e \in A$ is such that $m(e) < 0$, then we have that $f(A') - m(A') < f(A) - m(A)$ where $A' = A \setminus \{e\}$.
- This follows since f is monotone non-decreasing, and $m(A) = m(A') + m(e)$, so $m(A') > m(A)$.
- So we “throw away” any e s.t. $m(e) < 0$. We get a new function on $E' = E \setminus M$ where $M = \{e : m(e) < 0\}$, and define new function $f' : 2^{E'} \rightarrow \mathbb{R}_+$ with $f'(A) = f(A)$ for $A \subseteq E'$. This deals with (2) above.
SFM on arbitrary submodular g: transformation

- Given any arbitrary submodular function g with the goal of finding $A^* \in \text{argmin}_{A \subseteq E} g(A)$
- We reduce this to:

 $$A^* \in \text{argmin}_{A \subseteq E'} \left(f(A) - m(A)\right)$$

 \hspace{1cm} (17)

 where

 - f is a polymatroid function on $2^{E'}$
 - m is a modular function on $2^{E'}$ with $m \in \mathbb{R}^{E'}_+.$
 - $E' \subseteq E.$

- In the sequel, we assume this form, with ground set E.
- Moreover, we may assume that P_f is a polymatroidal polytope, with $P_f \subset \mathbb{R}^E_+.$
A characterization of the optimality of the SFM problem

- We proved in Lecture 7 (and again, in Lecture 11) the following theorem:
A characterization of the optimality of the SFM problem

- We proved in Lecture 7 (and again, in Lecture 11) the following theorem:

Theorem 4.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}_+^E$, then

$$\max \left(y(E) : y \leq x, y \in P_f \right) = \min \left(f(A) + x(E \setminus A) : A \subseteq E \right)$$

(18)

This can act as a certificate of optimality for any submodular function minimization problem on E, even if g is not polymatroidal. We need only find a feasible y on the max (left) side, and an A^* on the min (right) side that achieves equality, then A^* is a SFM solution in $A^* \in \arg\min_{A \subseteq E} g(A)$ where x is the aforementioned modular function, and $f(A) = g(A) + m(A) - g(\emptyset)$.

Prof. Jeff Bilmes
EE595A/Spr 2011/Submodular Functions – Lecture 17 - May 27th, 2011
A characterization of the optimality of the SFM problem

- We proved in Lecture 7 (and again, in Lecture 11) the following theorem:

Theorem 4.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, then

$$\max \{ y(E) : y \leq x, y \in P_f \} = \min \{ f(A) + x(E \setminus A) : A \subseteq E \} \quad (18)$$

- Thus, this can act as a certificate of optimality for any submodular function minimization problem on g even if g is not polymatroidal.
A characterization of the optimality of the SFM problem

- We proved in Lecture 7 (and again, in Lecture 11) the following theorem:

Theorem 4.1

Let f be a polymatroid function defined on subsets of E. For any $x \in \mathbb{R}^E_+$, then

$$\max (y(E) : y \leq x, y \in P_f) = \min (f(A) + x(E \setminus A) : A \subseteq E)$$

Thus, this can act as a certificate of optimality for any submodular function minimization problem on g even if g is not polymatroidal.

- We need only find a feasible y on the max (left) side, and an A^* on the min (right) side that achieves equality, then A^* is a SFM solution in $A^* \in \arg\min_{A \subseteq E} g(A)$ where x is the aforementioned modular function, and $f(A) = g(A) + m(A) - g(\emptyset)$.

Prof. Jeff Bilmes
EE595A/Spr 2011/Submodular Functions – Lecture 17 - May 27th, 2011 page 29
Maximizing y

- The nature of SFM will be very similar to the Edmonds's matroid partition problem (recall, asking if E can be partitioned into $\{I_i\}$ each independent in a matroid M_i) and the core algorithm is very similar.
Maximizing y

- The nature of SFM will be very similar to the Edmonds’s matroid partition problem (recall, asking if E can be partitioned into $\{I_i\}$ each independent in a matroid M_i) and the core algorithm is very similar.

- Now, from convex polytope theory, any $x \in P_f$ can be represented as a convex combination of at most $|E| + 1$ extreme points of P_f (each of which may be generated by greedy).
Maximizing y

- The nature of SFM will be very similar to the Edmonds's matroid partition problem (recall, asking if E can be partitioned into $\{I_i\}$ each independent in a matroid M_i) and the core algorithm is very similar.

- Now, from convex polytope theory, any $x \in P_f$ can be represented as a convex combination of at most $|E| + 1$ extreme points of P_f (each of which may be generated by greedy).

- We keep a feasible solution to the max version of the problem as a convex combination of such extreme points.
Maximizing y

- The nature of SFM will be very similar to the Edmonds's matroid partition problem (recall, asking if E can be partitioned into $\{I_i\}$ each independent in a matroid M_i) and the core algorithm is very similar.

- Now, from convex polytope theory, any $x \in P_f$ can be represented as a convex combination of at most $|E| + 1$ extreme points of P_f (each of which may be generated by greedy).

- We keep a feasible solution to the max version of the problem as a convex combination of such extreme points.

- That is, let I be an index set, and $x^{(i)}$ be an extreme point of P_f for $i \in I$. We then keep y as

$$y = \sum_{i \in I} \lambda_i x^{(i)} \quad (19)$$

where λ_i are convex coefficients.
Maximizing y

- The nature of SFM will be very similar to the Edmonds’s matroid partition problem (recall, asking if E can be partitioned into $\{I_i\}$ each independent in a matroid M_i) and the core algorithm is very similar.

- Now, from convex polytope theory, any $x \in P_f$ can be represented as a convex combination of at most $|E| + 1$ extreme points of P_f (each of which may be generated by greedy).

- We keep a feasible solution to the max version of the problem as a convex combination of such extreme points.

- That is, let I be an index set, and $x^{(i)}$ be an extreme point of P_f for $i \in I$. We then keep y as

$$y = \sum_{i \in I} \lambda_i x^{(i)}$$

(19)

where λ_i are convex coefficients.

- At each step of the algorithm, we either find a larger y, or demonstrate y’s optimality by finding a minimizing A.

Maximizing y

- The nature of SFM will be very similar to the Edmonds’s matroid partition problem (recall, asking if E can be partitioned into $\{I_i\}$ each independent in a matroid M_i) and the core algorithm is very similar.

- Now, from convex polytope theory, any $x \in P_f$ can be represented as a convex combination of at most $|E| + 1$ extreme points of P_f (each of which may be generated by greedy).

- We keep a feasible solution to the max version of the problem as a convex combination of such extreme points.

- That is, let I be an index set, and $x^{(i)}$ be an extreme point of P_f for $i \in I$. We then keep y as

$$y = \sum_{i \in I} \lambda_i x^{(i)}$$

where λ_i are convex coefficients.

- At each step of the algorithm, we either find a larger y, or demonstrate y’s optimality by finding a minimizing A.

- Start with $y = 0$, $I = \{1\}$, $\lambda_1 = 1$, and $\nu^{(1)} = 0$.
From vertex to vertex

- We will need to move from one extreme point to another (adjacent) extreme point, and will use an augmenting path like approach to do so.
- How do we characterize such adjacent extreme points?
From vertex to vertex

Theorem 4.2

Let x be an extreme point of P_f, and let \preceq be its partial order. Then, each of the following three operations will yield a new extreme point w:

(a) Let $a, b \in E$ and a cover b relative to \preceq. Let $w = x + \alpha \mathbf{1}_a - \alpha \mathbf{1}_b$ with $\alpha = f(\text{dep}(x, a) - b) - x(\text{dep}(x, a) - b)$.
From vertex to vertex

Theorem 4.2

Let x be an extreme point of P_f, and let \preceq be its partial order. Then, each of the following three operations will yield a new extreme point w:

(a) Let $a, b \in E$ and a cover b relative to \preceq. Let $w = x + \alpha 1_a - \alpha 1_b$ with $
abla = f(\text{dep}(x, a) - b) - x(\text{dep}(x, a) - b)$.

(b) Let $a \in E \setminus \text{sat}(x)$, and let $w = x + \alpha 1_a$ where $\alpha = f(\text{sat}(x) + a) - f(\text{sat}(x))$.
From vertex to vertex

Theorem 4.2

Let x be an extreme point of P_f, and let \leq be its partial order. Then, each of the following three operations will yield a new extreme point w:

(a) Let $a, b \in E$ and a cover b relative to \leq. Let $w = x + \alpha \mathbf{1}_a - \alpha \mathbf{1}_b$ with $\alpha = f(\text{dep}(x, a) - b) - x(\text{dep}(x, a) - b)$.

(b) Let $a \in E \setminus \text{sat}(x)$, and let $w = x + \alpha \mathbf{1}_a$ where $\alpha = f(\text{sat}(x) + a) - f(\text{sat}(x))$.

(c) Let $a \in \text{supp}(x)$ be maximal (w.r.t. \leq), and let $w = x - x(a) \mathbf{1}_a$.
Sources for Today’s Lecture