Machine Transliteration
(Knight & Graehl, ACL 97)

UW Machine Translation Reading Group, 11/30/2005
Transliteration & Back-transliteration

- Transliteration:
 - Translating proper names, technical terms, etc. based on phonetic equivalents
 - Complicated for language pairs with different alphabets & sound inventories
 - E.g. “computer” --> “konpyuutaa” コンピュータ

- Back-transliteration
 - E.g. “konpyuuta” --> “computer”
 - Inversion of a lossy process
Japanese/English Examples

- Some notes about Japanese:
 - Katakana phonetic system for foreign names/loan words
 - Syllabary writing:
 - e.g. one symbol for “ga” ガ, one for “gi” ギ
 - Consonant-vowel (CV) structure
 - Less distinction of L/R and H/F sounds

- Examples:
 - Golfbag --> goruhubaggu ゴルフバッグ
 - New York Times --> nyuuyooku taimuzu ニューヨーク タイムズ
 - Ice cream --> aisukuriimu アイスクリーム
The Challenge of Machine Back-transliteration

- Back-transliteration is an important component for MT systems
 - For J/E: Katakana phrases are the largest source of phrases that do not appear in bilingual dictionary or training corpora

- Claims:
 - Back-transliteration is less forgiving than transliteration
 - Back-transliteration is harder than romanization
 - For J/E, not all katakana phrases can be “sounded out” by back-transliteration
 - word processing --> waapuro
 - personal computer --> pasokon
Modular WSA and WFSTs

- $P(w)$ - generates English words
- $P(e|w)$ - English words to English pronunciation
- $P(j|e)$ - English to Japanese sound conversion
- $P(k|j)$ - Japanese sound to katakana
- $P(o|k)$ - katakana to OCR

Given a katana string observed by OCR, find the English word sequence w that maximizes

$$\sum_e \sum_j \sum_k P(w)P(e|w)P(j|e)P(k|j)P(o|k)$$
Two Potential Solutions

• Learn from bilingual dictionaries, then generalize
 • Pro: Simple supervised learning problem
 • Con: finding direct correspondence between English alphabets and Japanese katakana may be too tenuous

• Build a generative model of transliteration, then invert (Knight & Graehl’s approach):
 1. An English phrase is written
 2. A translator pronounces it in English
 3. The pronunciation is modified to fit the Japanese sound inventory
 4. The sound is converted to katakana
 5. Katakana is written
Word Sequence WSA: P(w)

- Get word sequence probabilities from a 262k list of words/phrases from WSJ + online English name list + online gazetteer of place names:

- Removed high-frequency words (e.g. function words, auxilliary verbs) that are not usually transliterated
- Built separate WSA for person names
Word to English Sound WFST: $P(e|w)$

- Use CMU Pronunciation Dictionary to generate a phoneme-tree based WFST:
 - 50k words, 25 consonants, 14 vowels, 1 PAUSE

- Alternative solution: general letter-to-sound FST
English Sound to Japanese Sound WFST: P(j|e) [1/2]

- What is the target Japanese sound inventory?
 - Option1: Katakana sounds (e.g. English sound K maps to one of か ka, き ki, く ku, け ke, こ ko)
 - (P R OW PAUSE S AA K ER) --> (pu ro pause sa kka) プロサッカ
 - Con: does not generalize: English K --> Japanese k sound
 - Option2: New inventory (Knight/Graehl approach)--
 - 5 vowels, 33 consonants
 - (P R OW PAUSE S AA K ER) --> (p u r o pause s a kk a a)
 - Note: long Japanese vowels are written as two symbols (a a)
English Sound to Japanese Sound WFST: $P(j|e)$ [2/2]

- WSFT is learned from a English-Katakana dictionary (8k pairs)
 - Generate sound sequences from pronunciation models $P(e|w)$ & $P(j|k)$
 - Symbol mapping probabilities trained by EM
 - Build WSFT from the probabilities:

 ![Diagram](attachment:image.png)

 • (More details in the paper)
Japanese sound to Katakana
WFST: $P(k|j)$

- 2 stage WFST:
 - Stage1: merges long Japanese vowel (a a) to one symbol (aa)
 - idea is to consume whole symbol before producing katakana
 - Stage2: conversion to Katakana
 - Some art/skill required here: based on corpus analysis and guidelines from a Japanese textbook
Katakana to OCR: $p(o|k)$

- Models OCR confusions:

| k | o | $P(o|k)$ |
|------|------|----------|
| ヒ | ヒ | 0.492 |
| ヒ | ビ | 0.434 |
| ヒ | ヒ | 0.042 |
| ヒ | 7 | 0.011 |
| ヒ | ヒ | 1.000 |
| ヒ | ヒ | 0.964 |
| ヒ | 0.036 |

- Probabilities generated by:
 1. Begin with katakana words (19,500 characters)
 2. Print them out and apply OCR
 3. Align with EM training
Example to tie it all together

- Input from OCR: マスクーズトーチメント
- Convert string to 12state/11arc FSA
- Compose with p(k|o) --> 12state/15arc WFSA
- Compose with p(j|k) --> 28state/31arc WFSA
 - Max score sequence: masutaazutochoimento
- Compose with p(e|j) --> 62state/241arc WFSA
 - Max score sequence: MAESTAETAEDEHUHTAOAOCHIHMEMENTO
- Compose with p(w|e) --> 2982state/4601arc WFSA
 - Max score sequence: masters tone am ent awe
- Rescore with p(w)
 - Max score sequence: masters tournament
Experiments

- Task: Back-transliterate the katakana of names of 100 U.S. politicians
 - E.g. jyon.buro, maiku.dewain, aruhonsu.damatto
- Compare machine with 4 humans:
 - Humans are native English speakers who are news aware.
 - However, they are not experts in Japanese phonetics

<table>
<thead>
<tr>
<th></th>
<th>Human</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correct</td>
<td>27%</td>
<td>64%</td>
</tr>
<tr>
<td>Phonetically equivalent but misspelled</td>
<td>7%</td>
<td>12%</td>
</tr>
<tr>
<td>Incorrect</td>
<td>66%</td>
<td>24%</td>
</tr>
</tbody>
</table>
Discussions

- Back-transliteration for other languages (e.g. Arabic/Chinese to English)
- Incorporation into MT and Noun-entity tagger?
- What is the bottleneck/challenge of back-transliteration?
- WFST approach vs. other approaches?