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ABSTRACT To overcome a bias towards labeling frames as a single class,

We present a novel classification model that is formulated as a ratig2rlier work presented a modified Kalman filter which allows a user
of semi-definite polynomials. We derive an efficient learning algo-t0 move in arbitrary directionslf]. That approach also introduces
rithm for this classifier, and apply it to two separate phoneme classif2d Which can make the system more difficult to control. Our goal,
cation corpora. Results show that our disciminatively trained modeinerefore, is to find a classifier which will more smoothly transition
can achieve accuracies comparable with state-of-the-art techniquB§tween classes. A consequence of this is that we expect any such
such as multi-layer perceptrons, but does not posses the overconfassifiers to produce higher entropy posteriors on average.

dent bias often found in models based on ratios of exponentials. We propose a novel model which we call Ratio Semi-Definite
Index Terms— Pattern recognition, Speech recognition Classifiers (RSC). These models are discriminatively trained, with

as many parameters per class (in the most general case) as a single
Gaussian with a full covariance matrix. Our new model is far from
Gaussian, though, as we will describe in the next section. Addition-

There are many multi-class classifiers, for instance multi-layer per"fl"y’ RSC_S do not_ rely on any fas_t-grow_lng functional forms (e.g.
ceptrons (MLPs)] and Gaussian mixture models. Given sufficient exponentials), Wh'_Ch We suspect Is an important part_of why_ t.h's
training data, and if we choose the right MLP, it is possible for theMmodel produces higher entropy output distributions while retaining
model to converge to the true posterior distributign|z). In prac- reasonable accuracy.

tice, however, these models, all based on exponentials, tend to pro- In thiz Phéper'_we wil ofter_1 k:efer to hir?her entr:_opylpost_eriors
duce low-entropy distributions. That is, whether wrong or right, the®S & 900d thing, in contrast with many other machine learning pa-
pers. To be clear, we specifically want higher entropy posteriors in

areas where data is sparse or where we have conflicting labels such

sifier. There has been recent interest in ranking classifiers, where®® around class boundaries. We do not want the classifier to jump

classifier not only gives a probability of the correct class but also Cor§teeply from one class to another as we move across boundaries.

rectly ranks the classes numerically. Concentrating too much prot;cli:hat IS, we wagt cI?ssmers V‘{'th. good ak(]:.czracy t;Ut thaé‘c?r.lbaltsjo pro-
ability mass on the top class will leave little accuracy for alternative”!/C€ INCréasea entropy posteriors — higher entropy cistributions 1s

classes. This is especially true as the number of classes grows. a sufficient C(_)ndition for this. In areas .With more densely packgd
Another application, the one motivating our work here, is thed‘_"‘ta from a single class, we have no opjectlon to lower entr_opy dis-
Vocal Joystick (VJ) 2]. Combining machine learning, signal pro- tributions although we are tolerant of higher entropy values in those

cessing and an understanding of human-computer interaction, the \F§5€s as that can be useful for meaningful rankings.
allows voice-based control for drawing][ or moving a mouse cur-
sor or robotic arm9]. Although targeted at individuals with motor 2. PROPOSED MODEL
impairments, many able-bodied people also enjoy using the VJ.
While the VJ provides users with a high degree of control, mo-The basic form of our novel classifier is quite simple:
tion is typically in one of the cardinal or ordinal directions. The T
current system maps vocalizations to movement using an approach py|x) = (x —dy)” Ay(x —dy) (1)
very similar to the one in14]. For on-screen motion, vowel quality 2o (x = di)T Ap(x — di)
controls the motion direction and loudness controls the speed. F%herex are the input features and the parameters to be leamed are
the robotic arm, vowel quality corresponds to movement across thg {Ay,d;.}X_, where K is the number of classes. Note that
top of a table with loudness again controling speed, and pitch CMinlike a G’ausskia:rll classifier, we have only a ponnom.iaI in the nu-
trols vertical motion. Here, we focus on vowel quality estimation. merator and only a polynon%ial in the denominator. In order to be
As an assistive device, accuracy and reliability are important, a3 yalid probability distribution, we must have; >' 0 Vk and
is providing the flexibility to accomplish new tasks. Currently, the ; =

babili S iah : x 3i € {1,.., K} such thatx” A;x > 0. That is, each matrix
zq/jalljif;sgl:jrt%?(tpgioeniel ltrllf)?/v:\?eTIi)grlﬁavtv?rll%vfesnwtggteisstli??rt\i \(/j?;g/i_ ust bg positiv_e semi-d_e_finite and at every point z_at_least one mat_rix
tion of.one of the pre-defined clésses The reason is simple: thmust give a strictly positive result. By parameterizing each matrix
e ) ) o asA = BBT, we can guarantee semi-definiteness at the loss of
classifiers are over-confident and produce low entropy posteriors. convexity, as seen i),

This material is based on work supported by the National Science Foun- ~ Given training dateD = {(x;,y:)}/L, wherex; are feature
dation under grant 11S-0326382. vectors andy; integral class labels, we can put our problem in a

1. INTRODUCTION




conditional maximum likelihood framework. We find that learning We add a penalty term while training to avoid areas of the pa-

RSCs is solved via an optimization problem: rameter space where the model is not continuous.
- - The most similar model we have found to ours, and the original
maleog Xn - dub) By, By, (xi — dy,) (2y  Motivation for RSCs, was presented B).[ Their form hasd;, =

— dk)TBkBT(x, —di)’ 0 Vk, meaning there is a lack of continuity at the origin. Addition-
ally, their model is symmetric about the origin pfy|x) = p(y|—

Without the parameterization of, this would be an instance of — and has additional constraints. SpecificalB},desires each ma-
semi-definite programminglf] and quite computationally expen- trix A;, be idempotent and thd, A, = I, which allows an in-
sive. 4] showed that, as long as there are fewer constraints than therpretation that the probabilities are an estimate of the degree to
rank of the matrices — for any matrix rank — this parameterizationwhich x belongs to clas. Requiring idempotent matrices makes
will add no additional local extrema. The result is that the optimiza-the problem NP-hard, s&Juses a relaxed version of that constraint.
tion will end on either a (nearly) flat constraint face or else will find As mentioned earlier, we also derived inspiration from the parame-
an optimal solution. Here, we are guaranteed semi-definitenesse &rizationA = BB” as seen in16], although that makes our opti-
we need not have any constraints. The resulting form can thus h@ization non-convex.
efficiently optimized. RSCs thus generaliz&][ The result that the matrices sum to

Definea;r = (x; — dk) "BrB{ (xi —dg) andB; = >, air  identity as found in] is a consequence of other assumptions and
so thatlog p(y:|x:) = log — Zivi - Differentiating with respect td3. allows a model that is truly linear in the class matrices. Our general-
andd., respectively, ylelds ’ ized version does not require such a constraint, which also simplifies

the optimization.

aloggéy¢IX¢) 9 (ﬂz * a‘ic (s — do)(xi — dc)TBc(S(yi, o) o
c QicfB; @) 2.2. Regularization and Penalty
1 One side-effect of requiring summation to identity as5%hif im-
— —(xi —do)(x; —de)TBe(1 — 6(yi, c))) plicit regularization. Since regularization has been shown to be im-
Bi portant for many machine learning algorithmis8[3, 12], we have
Ologp(yilxi) _ , (Bi— Yic p BT (s — do)8(ys, ) @) added regularization to our model, along with the aforementioned
od, o aicBi Yis penalty, both of which we will explain here.

Our full objective function is
m(gxzlogzo(yilxz')fhaZ|\19k||2rAczZ|\cll\2 ‘C| ()
1 k k

whereC = Y (dy — p)(di — p)™, with g = L 37, di. The

first regularization term is the Frobenius norm of the matrices and

. the second is the L2 norm of the shifts. These terms tend to prefer

2.1. RSC Properties smaller matrix and shift values. The third, a penalty on the determi-

Some properties of our model, and comparisons to other model§ant of the covariance matrix of the shift vectors, forces them away

follow. First, RSCs do not have any fast growing function, which from being equal (which causes non-continuity). This ensures that

we believe is important in allowing the production of higher entropythe model will remain continuous everywhere.

posteriors. Second, a more obvious point, is that a class is more We have considered alternative matrix regularizers, for instance

likely if the value of the numerator is large relative to that of other||B — aIH Early testing showed no improvement fer= 1 and

classes. Consequently, the vectdisarenot class means; we refer a = =, so for now we have focused on the simpler form given in

to them as shift vectors. If anything, they could perhaps be calle@Equation5.

anti-means since the shift vector for a given class will in general be  Atfirst, the penalty term’s reliance on a determinant would seem

pushed away from the mean of that classx i& dj, then class to yield a complex derivativelp]. Differentiating |C|~* with re-

will have zero probability. spect to element of vectork gives

Unfortunately, not all values of thé&vectors yield a well defined .

model. As Theorem A shows, an RSC is not always continuous. 8!’)(dj| _ %TT (0—1 8?10 )

Theorem A. Suppose ald;, = d. Then an RSC is not continuous rn ] o

atx = d. which would require a matrix multiply for every element of every
shift vector. By exploiting the derivative of a covariance matrix with

Proof. Letas; be the(ij)*" element of matrix4 andz,, be element  respect to one of its constituent vectors and taking advantage of the
n of vectorx. Also, letx’ = x — d, so that the posterior becomes matrix trace, we see that

" ’
p(y|x) = x,;zi':"’;;x,. Letz, =0 Vn #1i,then

- BBl (5~ 41~ 6(0.0)

There is no analytical solution, but this problem can be solved
via stochastic gradient ascent. The optimization can still be quite
complex; fast matrix multipliesl], 19] alleviate this problem.

oc|~t -2
2y o od,  K|C|

% i1

lim p(y|x') = hm )
z;—0 —o0 x>, af; Zk ag; where(x, y) is a dot product between vectors aAd; refers to col-
umn< of matrix A. Because of this simple form, we can thus calcu-
late the derivative for the entire vector at once as

slcIt _
ady K|C\

where we apply I'tbpital’s rule twice for the second equality. If we
dothesamefar,, =0 Vn # j,j #iwe findlimmlﬁ0 p(y|x’) =

¢ (di - ). (6)

y
> . These two limits are not equal in general. O
k@ JJ



Since C is symmetric, positive semi-definite and the same for all 4 vowels Accuracy (%) Entropy
shift vectors, this can be calculated very efficiently. Frames 1 [ 317 1 [ 3 [ 7
The gradients of Equatid relying on Equation8, 4 and6 and RSC 95.7 [ 97.5] 98.1 || 0.85/0.43[ 1.13/0.31[ 0.83/0.37
the trivial norm derivatives, are thus MLP 97.4| 98.2 | 98.6 || 0.66/0.40| 0.62/0.38] 0.31/0.29
o 9 log p(yi|x:) \uB ; Gaussian| 97.2 | 95.2 | 93.2 || 0.07/0.19| 0.08/0.21| 0.06/0.19
ob. OB o v 8 vowel A %) Ent
. vowels ccuracy (% ntropy
8?16 = al"gapi(gl'xl) — Xade + AS%C‘I(dC —p). (8 Frames | 1 [ 3 | 7 1 [ 3 T 7
. . . RSC 68.5| 71.2 | 73.4 || 2.14/0.32| 2.51/0.23| 2.53/0.22
For situations where the n_umber of c_Iasses is smalle_r than tl eNILP 713 72.2 | 72.7 [ 1.03/058] 1.04/0.56| 0.90/0.58
number of features, the covariance matrix of the shifts will not b Gaussian| 69.7 | 67.6 | 56,5 || 0.71/0.57| 0.57/0.55] 0.29/0.39

full rank. In these cases, we instead employ a set of random pre

jections p] and create a set of several matrices with elements diSTabIe 1 Development set results for the VJ Corpus. Only the best

tr_|buted_ asv(0, 1). We then calpulate the covariance in that lower- oq ¢ for each model are shown. Entropies are given as mean/dev.
dimensional space. By summing the results over several of these

matrices, we achieve the desired effect with high probability whil6§~2 vowels Accuracy (%) Entropy
the use of random matrices means the probability of a spurious largeFrames 1] 3] 7 1 [ 3 [ 7
penalty should be quite low. RSC 88.7 | 90.1| 89.9 || 0.97/0.43| 1.21/0.33] 0.98/0.40
MLP 90.6 | 91.1| 91.6 || 0.73/0.42| 0.70/0.42| 0.41/0.35
3. EXPERIMENTAL ENVIRONMENT Gaussian| 89.8 | 87.9 | 85.8 || 0.13/0.26] 0.11/0.24| 0.10/0.25
We have tested our model on two data sets. In both cases, we usegd o
MFCCs with first-order deltas giving 26-d feature vectors. Frames I‘S:r\;(::/]\l: SIS 1Ac[cur§cy [( A))7 1 [ Ent:;opy [ 7
were 25ms long with a 10ms shift. We also varied the number of
frames in the feature window. RSC 62.1| 63.2| 63.4 || 2.17/0.31| 2.52/0.21| 2.55/0.21
The first data set is the Vocal Joystick Vowel Corpli§][ This MLP i 67.2] 67.8 | 68.4 | 1.08/0.58| 1.11/0.58| 0.97/0.61
is a set of vowels collected specifically for the VJ project. We created Gaussian| 61.9 | 60.7 | 54.3 || 0.69/0.57] 0.54/0.53| 0.31/0.41

a training set from 21 recording sessions (2 speakers appear twice, ) )

although there is only partial overlap in their sounds), a developmentable 2. Test set results for the VJ Corpus. Entropies are given as

set of 4 speakers, and a test set of 10 speakers. All speakers comgan/standard dev.

from the earlier data collection efforts described16][and capture

the wide variability in human vowel production. 4. RESULTS AND DISCUSSION
W'th'n that corpus, we conducte_d_severa_tl sets of experiment evelopment set results on the VJ Corpus appear in Tablén

The first used only utterances containing a single vowel. We teste

two conditions: for the 4 vowel case, there are approximately 275 eneral, we see the RSC and MLP results improve with increasing
training frames (1931 utterances), and 550k frames (3867 utte vindow size, whereas the Gaussian shows decreasing accuracy. For

n for the 8 vowel For both develooment and testin V\Ehe 8-vowel 7-frame case, the one currently in use for VJ mouse
3 ;:es)_o d € c vowe clase.b 0 I'?t' ;egﬁ g a esl Ig’t' ceontrol, the RSC even beats the MLP. Despite that, the Gaussian

etermined accuracy vajues by Spliting the data 6 ways, calculaling ., \-h more confident than either other classifier, with the MLP
accuracy over 5 of the 6 sets, and taking the average result.

In addition to the single vowel utterances, we also tested th still substantially more so than the RSC — admittedly, however, the

. aussian was not trained with any regularization term.
models on utterances where a speaker shifts from one vowel to an- In Table2 we show results of applving the same models on the
other, which we term diphthongs. There are approximately 34OIfeSt ppiyIng

: ' ; set. The two sets are reasonably different (88f¢r reasons)
frames in 2140 utterances. These_ _f|Ies do not have labels; speak r(§accuracies have fallen. In this case, the Gaussian is always rather
were supposed to smoothly transition between vowels. The vowe

quality at the start and end of the utterances tends to be shifted franOnfldent despite being wrong quite often. The MLP shows higher

the vowel quality seen in single vowels. These files are used onl fdperformance than the RSC for accuracy in this case. Testing with
€q y . g - ; Y 1%ther RSC models that had slightly lower development set results
comparing the entropies of the resulting posteriors.

Our second data set is TIMIT], a standard database often used improved the accuracy to as hights2%.
for phone classification. We randomly selected 40 speakers from the

training set giving a 400 utterance development set. The test set was Diph. Z-vowel models
unchanged. We used the 39 phone set describedl]n [ Erames 1 [ 3 [ 7
We have compared our model to a 2-layer MLP and, since the

number of parameters are identical, to a Gaussian using single Gaus- RSC 1.01/0.46] 1.27/0.37| 1.04/0.45
sians with full covariance. For our model, we 3¢f = )\, and per- MLP _ 0.82/0.47| 0.79/0.47| 0.50/0.43
formed a search to tune the parameter values. We.set 10~ to Gaussian| 0.16/0.30] 0.13/0.28] 0.12/0.27
be small so that it will have a significant effect only if the shifts are 8-vowel models

nearly equal. For the neural network, we did a complete grid search Frames [ 1 [ 3 [ 7
over a substantial range values to determine the best values for both RSC 2.18/0.36| 2.55/0.25] 2.56/0.25
the number of hidden nodes as well as regularization parameters on MLP 1.03/0.63| 1.03/0.63| 0.91/0.66
both layers in order to compare against the best MLP we could find. Gaussian| 0.63/0.60] 0.48/0.55] 0.27/0.40

Additionally, we compared using feature windows of 1 and 3 frames,
and also 7 frames for the VJ Corpus. Table 3. Entropy (mean/dev) results for diphthongs.



(1]

50 100 150 200 250 300
Time (ms)

Fig. 1. Entropy plot for a diphthong /ae-i/. Plots use 4 vowel models, 2]
7 frame windows.

Dev. Accuracy (%) Entropy

Frames 1] 3 1 [ 3 2
RSC 46.0 | 47.7 || 3.36/0.96| 3.30/0.97 31
MLP 58.3| 64.0 || 2.03/1.13| 1.69/1.04 (4]
Gaussian| 54.9 | 50.6 || 1.32/0.93| 0.70/0.68

Test Accuracy (%) Entropy [5]
Frames 1] 3 1 [ 3

RSC 46.0 | 47.7 || 3.36/0.96| 3.30/0.98

MLP 57.8 | 63.4 || 2.04/1.13| 1.70/1.06 [6]
Gaussian| 54.6 | 50.6 || 1.32/0.93| 0.70/0.68

Table 4. Development (top) and test (bottom) results for TIMIT [7]
with 39 phone classes. Entropies are given as mean/standard dev.
Maximum possible entropse 5.29. [8]

The diphthongs, shown in Tab8are quite interesting — both
the MLP and Gaussian were, on average, even more confident when
the utterances crossed vowel boundaries. The RSC, on the othdf]
hand, showed very slight upticks in entropy values. This is where
we see the most potential for this model. Looking at Figlireve
see the desired effect: all three models have similar trajectories, b{i0]
the RSC is never as over-confident, especially in the middle of the
utterance, as are the other two models.

As Table4 shows, the RSC accuracy is worse compared to thél1]
other models on TIMIT. This may be due, in part, to the shifts being
pushed away from each class with so many more classes. Entropy
values, on the other hand, show that the RSC does seem to catch A&l
inherent ambiguity better than do the other models.

(23]
5. CONCLUSIONS AND FUTURE WORK

We have introduced a new classification model that is formulated as4;
ratio of semi-definite polynomials. We have moreover demonstrated
that this model can achieve comparable accuracies as state-of-the-art
discriminative classifiers, but does not posses the overconfident biggs)
inherent in these models. As with any novel model, there remainﬁs]
much work to be done. First, of course, we would like to find ways
to improve the accuracy on data sets such as TIMIT, as well as to
investigate ways to help generalization between development aggn
test sets on the VJ Corpus. We plan to explore probabilistic bounds
on our projected covariance regularizer in an attempt to show that [58]
will perform as expected with a very high degree of certainty. We
would also like to find theoretical bounds on the expected entropy of
our classifier versus that of other familiar classifiers. [19]
Beyond purely theoretical work, there are other more practical
details waiting to be examined. We have several new variations of
RSCs in mind, and several options mentioned in this work. We think
allowing adaptation would be useful for the Vocal Joystick and ex-

pect to work on that. There is still much to understand about RSCs
— we are very excited by the many new possibilities.

Finally, we would like to thank to Amar Subramanya for many
useful discussions about this model and that foundjin [
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