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Abstract

We address the problem of finding a subset of a large training data set (corpus) that
is useful for accurately and rapidly prototyping novel and computationally expen-
sive machine learning architectures. To solve this problem, we express it as an
minimization problem over a weighted sum of modular functions and submodular
functions. Quantities such as number of classes (or quality) in a set of samples,
or quality of a bundle of classes are submodular functions which make finding the
optimal solutions possible. We apply the principal partition to our problem such
that solutions for all possible trade-offs between a modular function and a sub-
modular function can be found efficiently. We show results for speech recognition
on the Switchboard-I speech recognition corpus, demonstrating improved results
over previous techniques for this purpose. We also demonstrate the variety of the
resulting corpora that may be produced using our method.

1 Introduction

A challenge working with large machine learning data sets is determining how to quickly test a new
algorithm on such data. In general, it is important to be able to test a novel idea quickly, without
investing enormous amounts of time on the engineering effort to make the ideas perform well, and if
a new idea ends up performing poorly, knowing this sooner rather than later will avoid futile work.
Often, the more novel the idea, the more effort it takes to get it working on large data since there is
less chance of potential implementation reuse from pre-existing systems.

One way to address this problem is to produce a smaller version of the data. Often, the complexity
of an iteration of a machine learning system is linear in the number of samples but polynomial
in the number of classes. For instance, in speech recognition, decoding using a trigram language
model with size-N vocabulary (number of classes or types) has, in the worst case, a complexity of at
leastO(N3); in image segmentation, breaking an image into regions where each region corresponds
to one of N objects (classes or types) using a MRF with non-submodular k-interaction potential
functions, can have complexity as bad as O(Nk).

Our goal therefore is to improve the turnaround time for developing and testing novel algorithms but
still exploit the utility in large data. One approach is to select a subset of the data where the number
of types is limited and the total number of samples is maximized. Ideally, we would like a process
that can take a large corpus and produce a subset that satisfies a particular purpose. For example,
when vocabulary size is the key attribute hindering the rapid evaluation of novel method, we might
choose a limited vocabulary subset of data of maximal size. On the other hand, we may wish to
correct for some other quality, such as imposing a bias against certain word forms. We moreover
wish the results from the corpus to be an accurate reflection of results from the entire corpus.
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Figure 1: In subfigure (a), V = {v1, v2, v3, v4} and F = {f1, f2, f3}. For X = {v3, v4}, γ(X) =
{f2, f3}; for Y = {f1}, ζ(Y ) = {v1}. In (b), the s-t graph corresponding to Eq. 5. Also see [4].

We address this issue as a combinatorial optimization problem, and in this paper we formulate it
as an optimization problem via the use of the principle partition of a submodular functions [1]. As
we will see, this allows us to express the problem of corpus subset selection in a variety of flexible
ways, suiting the needs of an individual novel system and its designer.

We demonstrate our approach for the task of large vocabulary spontaneous conversational speech
recognition – one of the most challenging tasks in speech processing and one of the most compu-
tationally demanding in all machine learning. In recent times, very large amounts of transcribed
speech data, with both many tokens and many types, have become available. Some corpora have
vocabulary size as large as one million and as many as 230 billion tokens [2]. In the past, researchers
have addressed this issue and have used methodology to create a small version of a large corpus [3].
As we will see, the approach herein outperforms these previous methods.

2 Problem Setup

We formulate our approach using a bipartite graph. Let V be a set of corpus utterances, and let
F be the vocabulary (set of types) contained in these utterances. We define a bipartite graph G =
(V, F,E) where V are the left nodes, F are the right nodes, and E ⊆ V × F are the edges where
each (v, f) = e ∈ E is an edge between a node v ∈ V and f ∈ F if utterance v contains word f .

In [3], a simple greedy algorithm was used to find a vocabulary of any given size while selecting the
corresponding in-vocabulary utterances from the larger corpus. The greedy heuristic was designed
to maximize the amount of the data (number of tokens) selected. In particular, in each greedy step,
a new type is added such that the number of tokens in the utterances that contains only the new
vocabulary is maximized. Formally, the greedy algorithm in [3] attempts to select a set of types
Y ⊆ F such that a set function fsvb : 2F → R is maximized, where fsvb(Y ) ,

∑
i∈ζ(Y ) ti, ti is the

number of tokens in utterance i, and ζ(Y ) is the set of nodes v ∈ V that have neighbors only in Y
and not in F \ Y . That is

ζ(Y ) , {v ∈ V : ∃f ∈ Y s.t. (v, f) ∈ E and (v, f ′) /∈ E,∀f ′ ∈ F \ Y }
The greedy algorithm in [3] works by repeatedly taking an existing set Y , finding a y ∈ F \ Y that
maximizes fsvb(Y ∪ {y}) and then updating Y by including that y. This repeats as long as a desired
vocabulary size constraint |Y | ≤ b is satisfied.

A set function f : 2V → R is submodular [1] if for any A ⊆ B ⊆ V and k /∈ B, we have

f(A ∪ {k})− f(A) ≥ f(B ∪ {k})− f(B), (1)

and f is supermodular if −f is submodular. Now unfortunately for [3], fsvb is supermodular [4].
Therefore, the problem is essentially one of maximizing a supermodular function subject to a car-
dinality constraint. The greedy algorithm for this problem, as used in [3], has an unboundedly
poor approximation factor. For instance, let F = {x, y, z}, f({x}) = 1, f({y}) = f({z}) =
0, f({x, y}) = f({x, z}) = 1, f({y, z}) = p > 1 and b = 2. Greedily maximizing f leads to a
solution {x, y} with objective function value 1, while the true optimal objective function value is p.
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Since p is arbitrary, the approximation factor for this example is unbounded. This is not surprising,
as it is known that greedy algorithm works near-optimally only when maximizing a submodular
function subject to cardinality (knapsack) constraint [5, 6], and has been successfully applied to
active learning [7] and document summarization [8, 9] in our previous work.

In this paper, we treat the corpus creation problem as finding a subset of sentences X ⊆ V that
simultaneously minimizes the vocabulary size and maximizes the total amount of data, measured as
either the number of utterances, the number of tokens in the utterances, or duration of speech. We
do this by finding X that maximizes the following expression

w(X)− λΓ(X) (2)

where w(X) measures the amount of data contained in utterances X , Γ(X) represents the vocabu-
lary size associated with utterances X , and λ ≥ 0 is a tradeoff coefficient.

We may have different w functions depending on our needs. For instance, when w is the cardinality
function, i.e. w(X) = |X|, it measures the number of the utterances. We can also use w(X) =∑
i∈X ti: when ti represents the number of tokens in utterance i, w(X) is the total number of

tokens in X; and when ti represents the speech time-length of utterance i, w(X) is the total speech
duration of the utterances X .

We can also have different forms of Γ(X). First, we define γ(X) to be the set of nodes f ∈ F that
have a neighbor in X (i.e., words that appear in utterances X). That is

γ(X) , {f ∈ F : ∃v ∈ X s.t. (v, f) ∈ E}. (3)

Then several possible forms of Γ(X) include:

• Γ1(X) = |γ(X)|. This represents the collective vocabulary size of utterances in set X .
• Γ2(X) = m(γ(X)) =

∑
i∈γ(X) pi, where pi indicates the unimportance of word i. A

larger pi states that word i is less important. This allows certain desirable properties of the
vocabulary of the resultant corpus to be expressed (e.g., words with more syllables might
be preferred). Note if pi = 1,∀i, then Γ2 = Γ1.

• In some case, incorporation of stop words (e.g., “about”, “after”, “all”, “am”, etc.) is less
desirable compared to content words that convey the semantic meaning of an utterance.
Let (Fs, Ff ) be a partition of F into stopwords Fs and Ff non-stop (function) words Ff =
F \ Fs. We can use the above modular function (i.e. m in Γ2) to put a preference against
stop words. I.e., for any f ∈ Fs and f ′ ∈ Ff , we would have that m(f) ≥ m(f ′).
So far (empirically) this has ended up performing poorly since it effectively reduces the
vocabulary size down only to the function words.
Alternatively, we can use a submodular function that has a preference away from stop words
— the function is a mixture of a modular function over stop words and concave-submodular
function over content words. I.e., we define

Γ3(X) = m(γ(X) ∩ Fs) + α
√
m(γ(X) ∩ Ff ) (4)

where α is a tradeoff coefficient. This function is such that once we start including non-stop
words, they become cheaper but the stop words retain their expense.

Note that maximizing Eq. (2) is identical to finding X that minimizes

L(λ,X) , w(V \X) + λΓ(X). (5)

For a given λ, if L(λ,X) is a submodular function on X , then minX⊆V L(λ,X) can solved exactly
in polynomial time [10, 11]. Fortunately, all the aforementioned w functions are modular (both
submodular and supermodular), and all the aforementioned Γ functions are submodular, making
L(λ,X) submodular in all our cases. Therefore we can solve our corpus creation problem optimally
by leveraging submodular function minimization techniques.

To create a corpus with the desired property (e.g., a fixed upper limit on vocabulary size), different
values of trade-off coefficient λ must be tried, where multiple calls of the optimization algorithm
are required. That is, we do not have direct control on the vocabulary constraint, only indirect
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control via λ. In our case, however, all possible solutions for minX⊆V L(λ,X) for all possible
λ ≥ 0 can be found in the same complexity as the complexity of solving minX⊆V L(λ,X) for a
single λ, and moreover there are only a finite (no more than |V |) number of distinct values of λ that
makes a difference, all thanks to submodularity.

3 Principal Partition

Let X (λ) be the minimizer of L(λ,X) and L(λ) be the corresponding optimal value. That is

X (λ) , {X ⊆ V : L(λ,X) ≤ L(λ,X ′),∀X ′ ⊆ V } , (6)

L(λ) , L(λ,X), X ∈ X (λ) (7)

and let X+(λ) be the unique maximal element in X (λ) and X−(λ) be the unique minimal element
in X (λ). Formally,

X+(λ) ,
⋃
{X ⊆ V : L(λ,X) ≤ L(λ,X ′),∀X ′ ⊆ V }

X−(λ) ,
⋂
{X ⊆ V : L(λ,X) ≤ L(λ,X ′),∀X ′ ⊆ V }.

Then, we have the following theorem

Theorem 1 (Theorem 7.15 in [1]). If Γ is non-decreasing submodular. Then there exists a sequence
of real values λ1 < λ2 < · · · < λp (the critical points) where p ≤ |V | such that the distinct
X (λ), λ ∈ R+ are given by: X (λi), i = 1, 2, · · · , p; For any λi < λ < λi+1 we have X (λ) =
{X−(λi)} = {X+(λi+1)} , {Xi}.

L(λ) is a piece-wise linear function. Every intersection point of the line segments is called critical
points, i.e. λ1, · · ·λp. For every critical point λi, X (λi) has at least two elements, with maximal
element Xi−1 and minimal element Xi (Xi−1 ⊃ Xi). For any λi < λ < λi+1, X (λ) has only
one element, i.e. L(λ) = {Xi}. Therefore, all possible solutions can be identified by finding
λi, i = 1, · · · p which corresponding to the following nested sets:

V = X1 ⊃ X2 ⊃ · · · ⊃ Xp = ∅ (8)

where X1 \X2, · · · , Xp−1 \Xp consists a decomposition of the ground set, and is called principal
partition of Eqn. (5). Therefore, if we can find all the critical points and the corresponding Xi, i =
1, · · · p, then we obtain a natural partition of the original corpus, we can take any proper Xi as the
newly created corpus with desired property.

A straightforward way of finding all the distinct λ values is by using a divide-and-conquer strategy
that recursively examines a given interval of λ, which requires O(|V |) calls of minimization of a
submodular function. On the other hand, finding all distinct λ values (and minimizing sets) can be
done using parametric submodular function minimization. When using a push-relabel framework
[12], finding solutions for all λ requires only the same asymptotic running time as a single sub-
modular function minimization. Note that the push-relabel framework was firstly introduced in [13]
for network flow (graph cut) problem. If the submodular functions used in are graph-representable
(e.g. Γ1,Γ2 in our case), we can convert our submodular minimization problem to the problem of
finding minimum s-t cuts on a graph (part (b) of Figure 2 shows one example of the conversion), and
therefore a fast parametric flow algorithm [13] can be used to find all the solutions for the corpus
creation problem for all possible values trade-off coefficient λ, while only requiring the computa-
tional complexity of running a single minimum s-t cut, which can be solved very efficiently even
on very large graphs. For submodular functions that are not graph-representable (e.g. Γ3), we use
minimum-norm-point algorithm for minimizing our submodular functions, which is shown to be
more efficient than the combinatorial algorithms in practice [14].

4 Experiments

We tested our corpus creation approach on Switchboard I. To be comparable with [3], we followed
the same experimental setup. In particular, each side of the long conversations in the Switchboard-I
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Table 1: Corpus statistics on vocabulary size, average number of phones in the pronunciations of the corpus
vocabulary, the total number of utterances, the total number of tokens in the utterances, and the duration of
speech. w1(X) measures the total number of tokens in X . w2(X) measures the total duration in X . In corpus
D,Γ2(X) =

P
i∈γ(X) pi =

P
i∈γ(X)

C
qi

, where C is a constant, and qi is the number of phonemes in the
pronunciation of word i. In corpus E, Γ2(X) =

P
i∈γ(X)∩Fs

100 +
P
i∈γ(X)∩Ff

1.

ID Method Vocab size Ave. proun. Utt # Token # Minutes
10 2.5 6775 7792 55.8
25 2.72 9778 13324 85.2

SVB greedy 50 2.78 12442 20914 115.8
100 3.12 14602 28611 148.8
500 3.93 23670 89420 386.4
10 2.80 7615 8771 60.84
25 2.72 10911 15952 92.55

A |V \X|+ λΓ1(X) 51 2.75 13506 23076 122.49
115 3.19 16573 34213 169.32
489 3.88 26165 96260 406.42

9 3.00 7197 8600 59.18
24 2.71 10625 15803 90.33

B w1(V \X) + λΓ1(X) 50 2.70 13156 23124 120.69
113 3.11 16230 35174 169.05
459 3.86 25175 93785 393.52
10 2.90 7586 9114 62.75
26 2.96 11030 16330 95.68

C w2(V \X) + λΓ1(X) 50 3.06 13365 22916 122.26
95 3.28 15580 31415 157.40

437 3.85 24851 89987 380.87
10 3.50 7329 8778 60.95
27 3.74 10755 15473 93.65

D w2(V \X) + λΓ2(X) 50 3.78 12998 21576 118.55
746 4.95 29029 128902 537.42

E w1(V \X) + λΓ2(X) 50 3.96 6705 8435 59.10

corpus was divided into shorter segments. These segments were further divided into smaller utter-
ances at every silence longer than 500ms. The resulting utterances were pruned by removing those
contain disfluency and filler-model words.

We investigated several types of w and Γ function, and produced corpora with different properties.
The statistics of these corpora (corpus A,B,C,D), along with the statistics of SVitchboard [3], our
baseline, are illustrated in Table 1. For the baseline, the greedy algorithm did not perform as poorly
as one might expect, presumably because the increment of the supermodular function corresponding
to this task is not diminishing that fast as the set size decreases. Note that in our approach the
vocabulary sizes of the resulting corpora are naturally determined by the principal partition rather
than predefined, and we choose those that are as close as possible to the SVitchboard vocabulary
sizes (10, 25, 50, 100, and 500) for comparison.

Corpus A was produced with objective function |V \ X| + λΓ1(X): maximizing the number of
utterances while restricting the vocabulary size. Results in Table 1 show that corpus A indeed
includes more utterances compared to other corpora (created with objectives that are not maximizing
the number of utterances) given the same vocabulary size. For instance, with vocabulary size 10,
corpus A contains 7615 utterances while SVitchboard has 6775. It even contains more utterances
(26165 vs. 23670) with a smaller vocabulary (489 vs. 500), compared to SVitchboard.

Corpora B and C are similar to A except that utterance weights are used. In particular, for corpus
B, each utterance is measured by the number of tokens it contains (i.e. w1(X) measures the number
of tokens in utterances X), while in corpus C, each utterance is measured by the minutes of the
non-silence speech (i.e. w2(X) measures the speech duration in X). As we can see from Table 1,
corpora B and C do have the desired property. For example, with vocabulary size 50, there are 23124
tokens in B, which is larger than those in SVitchboard, or in corpora C and D; there are about 122
minutes of speech in C, which is more than those in SVitchboard, or in corpora B and D.
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In some situations, we may be concerned not only about the amount of data and the vocabulary
size, but also wish for the resulting vocabulary to possess certain properties. Our method can handle
such scenarios naturally and efficiently. For instance, a corpus with a limited vocabulary but rich
phonetic variety could be useful for research on novel pronunciation modeling, and this is how we
produced corpus D. We approximated the phonetic richness by the number of phoneme tokens in the
pronunciation of a word. We used a Γ2 function, where pi was set to be the inverse of the number
of phonemes in the pronunciation of word i. Words with more phones will have lower a weight
and therefore a higher chance of being selected. Table 1 shows that corpus D is well balanced in
terms of corpus size and vocabulary variety. In particular, compared to SVitchboard at vocabulary
size 50, corpus D not only has a vocabulary with longer average pronunciation length (with words
like “absolutely” and “definitely”), but also includes more tokens and more acoustic speech. We
compare the complete vocabulary of SVitchboard-50 and D-50 using a Venn diagram in Figure 2,
clearly showing that D-50 has a richer lexicon.
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Figure 2: Venn diagram showing the vocabulary difference between SVitchboard-50 and D-50.

In corpus E, we used a Γ2(X) =
∑
i∈γ(X)∩Fs

C+
∑
i∈γ(X)∩Ff

1 such that non-stopwords (i.e., Ff )
are preferred. The resulting corpus indeed includes more non-stopwords (note that function words
usually contain more syllabels, and as we can see, the average pronunciation length of E vocabulary
50 outperforms all other corpora). Since most of the utterances in SWitchboard contain stopwords
(i.e. it is a corpus on conversational speech), the size of a sub-corpus that contains less stopwords
also significantly reduced. Nevertherless, we could adjust the constant C in Γ2 to reach a preferred
balance between corpus size and amount of stopwords.
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