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Abstract
In this paper we propose a novel multiclass classifier called

the probabilistic linear machine (PLM) which overcomes the
low-entropy problem of exponential-based classifiers. Al-
though PLMs are linear classifiers, we use a careful design of
the parameters matched with weak requirements over the fea-
tures to output a true probability distribution over labels given
an input instance. We cast the discriminative learning problem
as linear programming, which can scale up to large problems
on the order of millions of training samples. Our experiments
on phonetic classification show that PLM achieves high entropy
while maintaining a comparable accuracy to other state-of-the-
art classifiers.
Index Terms: multiclass classification, probability output,
over-confident classifier, linear programming

1. Introduction
Classifiers based on exponential family functions (e.g., multi-
layer perceptrons, Gaussian classifiers and support vector ma-
chine with Gaussian kernels) are widely used in many areas
such as speech signal processing and pattern recognition. De-
spite of their success, due to the nature of the exponential func-
tions, these models are typically very confident in their predic-
tion, putting most of the score or probability mass on a single
label, excluding alternative labelings. This is even true when a
given sample is far from the training data, so such classifiers are
even confident when there is a training/test data mismatch (as is
common in speech applications).

In cascaded systems, this property may cause drop in the
overall performance since early-on all the labels but a very few
are essentially ruled out, not allowing later stages of the system
a good alternative label to choose from. For instances in HMM-
based speech recognition where pruning based on the partial
log-likelihood (e.g., the forward computation) or local posterior
probabilities (e.g., hybrid ANN/HMM systems) is very com-
mon, concentrating too much probability mass on the top class
will leave little accuracy for the alternative classes. Having a
less confident but still accurate local (frame-by-frame) classi-
fier, and leaving some probability available for the alternate lo-
cal hypotheses (e.g., effectively expressing a soft ranking of the
local labels) could make pruning algorithms work better. Note
that, in general, it is not sufficient to exponentiate and then re-
scale such low-entropy probabilities, as sometimes they have
such low entropy that the probability of the low probability can-
didates is essentially numerical noise. Another place that may
benefit from less-confident acoustic classifiers is in the combi-
nation of an acoustic model and language model score, where

Gaussian mixture models are usually used as the observation
distributions, and where scaling is therefore necessary.

Still another application, which is the primary motivation
of the work here, is the Vocal Joystick project. Combining ma-
chine learning, signal processing and human-computer interac-
tion, Vocal Joystick (VJ) project [1] is an application that al-
lows voice-based control for moving a computer mouse cursor,
or robotic arms. It specifically targets individuals with motor
impairments, while many able-bodied people also enjoy using
VJ for voice controlled drawings and multi-modal interaction.
The VJ systems use vowel quality to control the motion direc-
tion and loudness to control the speed. For instance, 4-class
vowel system uses four vowels to map to the four principle di-
rections of up, down, left and right, and in 8-vowel system more
precise diagonal directions are possible. To provide users with
a high degree of control, VJ uses output probabilities as mix-
ing weights to estimate vowel quality. An unwanted side effect
of using classifiers that are based on exponential functions is
that only a single direction of the pre-defined classes is usually
dominant.

To overcome this problem, Malkin and Bilmes [2] proposed
the ratio semi-definite classifiers (RSC) to obtain higher en-
tropy posteriors on average, where ratios of polynomials are
used instead of ratios of exponentials. Although RSCs were
shown to work well in practice, they are learned using a non-
convex optimization procedure which is often hard to optimize
and only sub-optimal solutions can be found in practice. Fur-
thermore, we felt that the accuracy of these classifiers could be
further improved thus inspiring more research. Thus herein we
present the Probabilistic Linear Machines (PLMs) where we re-
place the ratio between polynomials with simple linear terms,
which, to start with, achieve even higher entropy posteriors.
Intuitively, linear models usually gradually reduce probability
values when transiting between classes, while the exponential
posteriors (and even the greater-than-1st-order polynomials of
RSCs [2]) tend to have more dramatic and sudden changes re-
sulting in higher entropy (see Fig. 1). This intuition is verified
by our experimental results, where PLMs have high-entropy on
average while remaining sufficient accuracy (see Sec. 5).

As suggested by its name, a PLM is essentially a linear clas-
sifier which is learned using linear programming (LP). Recent
advances [3] in LP optimization resulted in algorithms that can
scale up and solve efficiently problems with millions variables
or constraints, and are implemented as general purpose solvers
like CPLEX [4] and MOSEK [5]. Note that ℓ1 norm support
vector machines [6, 7, 8] are also formulated as an LP. Our ap-
proach is distinguished by that fact that it incorporates multi-
class support and probability output simultaneously in one sin-



gle LP optimization step.
SVMs were originally designed for binary classification.

Only later they were extended to multiclass classification tasks,
often in one of two ways: a reduction to binary classification or
a direct approach. In the first case (some known as the “one-
versus-rest” or “one-versus-one”) the problem is first decom-
posed into a set of binary classification tasks, which later are
combined to a single multiclass prediction (e.g., [9]). Platt et.
al. [10] proposed to organize the binary problems in a directed
acyclic graph. The second approach (e.g., by Crammer and
Singer [11]) constructs a direct optimization formula. Our clas-
sifier also belongs to this latter category.

Unlike SVMs, PLMs produce calibrated probabilistic out-
puts and not general score values. Such posterior probabilities
are very useful in many ways: they can be used to minimize
the decision risk, compensate class priors, produce rankings,
and are essential for model combinations since they are “nor-
malized”. There are several approaches to combine the large
margin method with probabilistic outputs: Platt’s [12] approach
is the most notable example, where a sigmoid is applied to the
output of the SVM. Platt also proposed a few methods to cali-
brate the parameters of the sigmoid. On the other hand, PLMs
directly output probability distributions by incorporating proba-
bilities in the learning optimization. Indeed, whether to convert
non-probabilistic output into probabilities or directly learn the
classifiers that output probabilities is still an open question [13],
which we plan to further investigate in our future work.

2. Probabilistic Linear Machines
Our classifier produces probabilities as follows:

p(y|x) =
wT

y ϕ(x)
P

z wT
z ϕ(x)

(1)

where x ∈ Rd is the input vector ,y ∈ {1, ..., K} is a class
labels, ϕ(·) : Rd → RD

+ is a mapping into non-negative
feature values, and the parameters to learn are the weights
wy, y = 1, ..., K. A valid probability distribution is obtained
by constraining the value of wy to be non-negative. The specific
mapping ϕ(·) we used is described in Sec. 5.

Note that p(y|x) is a fractional linear function of both wy

and (as we will see) x. Since a fractional linear function is quasi-
convex [3], the learning of parameter wy could have been op-
timized by solving a series of convex optimization problems.
We, however, take an alternative approach, and formalize the
learning problem using linear programming, where we further
simplify the basic form: we pose the following element-wise
simplex weight constraints,

K
X

y=1

wy = 1D×1 (2)

such that

p(y|x) =
wT

y ϕ(x)

11×Dϕ(x)
=

ϕ(x)T wy

||ϕ(x)||1
. (3)

where 1D×1 is a vector in RD with its elements equal to 1 and
|| · ||1 represents ℓ1 norm. This results in a distribution p(y|x)
which is a linear function in wy , while the probability properties
are still preserved (i.e., p(y|x) ≥ 0,

P

y p(y|x) = 1). More-
over, without loss of generality, we assume that ϕ(x) is normal-
ized such that ||ϕ(x)||1 = 1, so that Eq. (3) can be written as
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Figure 1: An illustration of larger entropy property of linear
models comparing to exponential models. Consider a two class
problem with classes C1 and C2, and a posterior distribution
where p(C1|x = 0) = p(C2|x = 1) = 1, p(C1|x = 0.5) =
p(C2|x = 0.5) = 0.5 and p(C1|x = 1) = p(C2|x = 0) = 0.
When linear models are used, the posterior probability distri-
bution typically has a form shown on the left figure in red
(pl(·|x)), while exponential models usually end up with the dis-
tribution shown on the left figure in blue (pe(·|x)). The right
figure shows the resulting entropy. As can be seen, the entropy
of the exponential model is never greater than the linear model.

p(y|x) = ϕ(x)T wy = wT
y ϕ(x) . (4)

Specifically, the element-wise simplex constraints remove
the unknown variable wy from the denominators of Eq. (1),
making it a linear function on wy . In the rest of the paper, we
simplify the presentation and denote the model as follows:

p(y|x) = xT wy = wT
y x (5)

We will revisit ϕ in Sec. 5.
Note that a similar trick was already used in the context of

semidefinite probabilistic models [14]. Also, Cesa-Bianchi et.
al. [15] suggest to force the output of linear classifier to be in
the [0, 1] range by assuming both the feature vector x and the
weight vector wy lie in a ball of radius 1. However, there is
no simple and direct extension of this approach to multiclass
problems.

As mentioned in Sec. 1, one benefit of having such linear
forms is that, when a point moves between classes, linear mod-
els usually gradually reduce probability, while the exponential
posterior tends to suddenly and rapidly change, and for most of
the way, resulting in higher entropy. Fig. 1 illustrates one exam-
ple. Another benefit, as we will see in the following section, is
that we can use linear programming to obtain the global optimal
solution of the learning problem.

3. Learning Methods
Given a training set D = (xi, yi)i=1,...,N , we seek a set of pa-
rameters {wy}y that result in a good classifier. A good classifier
should assign higher probability to correct classes than those
to incorrect classes. Moreover, it is sufficient to maximize the
margin between the probability for correct class p(yi|xi) and
the incorrect ones p(z|xi) where z ̸= yi.

We define the margin of the classifier on an example xi as

mi = p(yi|xi)−max
z ̸=yi

p(z|xi) . (6)



As in standard non-separable SVMs our learning algorithm
trades-off between maximizing the minimal margin and allow-
ing some of the examples to be outliers, formalized as:

max
η,{wy},{ξi}

η − C

N

N
X

i=1

ξi (7)

subject to: xT
i (wyi − wz) ≥ η − ξi, ∀z ̸= yi, ∀i

1 ≥ ξi ≥ 0, i = 1, ..., N

1 ≥ η ≥ 0

wy ≽ 0, y = 1, ..., K

K
X

y=1

wy = 1D×1

where C is a constant that controls the trade-off between the
classifier margin and the training errors, η represents the mini-
mum margin on the training set and {ξi} are slack variables. In
this optimization problem, the unknown variables are {wy}y ,
η, and {ξi}Ni .

It is easy to verify that both the objective function and the
constraints are linear in these variables. Therefore, optimiza-
tion problem in Eq. (7) is a linear programming (LP) problem,
which can be solved using standard LP solvers like CPLEX [4]
and MOSEK [5]. Note that LP has also been applied to the
margin-based learning problem of linear SVMs [6, 7, 8], where
the LP has similar forms as the LP proposed here. Our LP for-
mulation of PLMs is distinguished from previous work since it
incorporates multiclass support and probability output simulta-
neously in one single LP optimization problem, and therefore
can be solved with a global optimum guarantee.

Algorithm 1 Active working set for solving LP 7
1: Input (xi, yi)i=1,...,N , C, ϵ,Dc, c = 1, ..., M
2: Initialize A ← ø,Dc = D1

3: repeat
4:

(w∗, η∗, ξ∗)← argmax
w≥0,1≥ξi≥0,1≥η≥0

η − C

N

N
X

i=1

ξi

subject to: xT
i (wyi − wz) ≥ η − ξi, ∀(i, z) ∈ A

X

y

wy = 1D×1

5: f ← true
6: for i = 1, ..., N do
7: if minz xT

i (w∗
yi
− w∗

z) < η∗ − ξ∗i − ϵ then
8: f ← false
9: if i ∈ Dc then

10: A ← A∪ (i, arg maxz ̸=yi xT
i w∗

z)
11: end if
12: end if
13: end for
14: Dc← next data chunk
15: until f = true

4. Active working set algorithms
Although the LP formulation of PLM above can be solved
with general purpose solvers, in practice they are not useful
since these standard solvers often first load the entire optimiza-
tion problem directly into memory. Thus machines with large
amount of memory are required for solving even medium sized
problems. We note that the size of the PLM formulation as a
LP is linear in feature dimension D, the number of classes K,

and the number of training samples N , yielding a total mem-
ory complexity ofO(KDN). For the large scale problems that
often arise in speech processing and recognition, hundreds of
thousands of training examples are involved. Furthermore, the
number of classes and the input feature dimensions are large
enough to significantly increase in the problem size. Hence,
standard solvers are not adequate. For example, MOSEK re-
quires 64G memory to solve the 8-vowel classification task that
we used (see Sec. 5). To overcome this problem, we develop an
active working set algorithm (Algorithm 1).

The basic idea is that only a small fraction of the large num-
ber of constraints in Eq. (7) actually affects the optimal solution.
The examples that are classified with large margins have no in-
fluence on the learned parameters. This is similar to the notion
of support vectors in SVMs where examples that lie near the
class decision boundary constitute a small portion of the entire
training set. Furthermore, for each multiclass training example,
often at most one additional class (besides the correct class) will
affect the optimal solution. In other words, although we have
K − 1 constraints xT

i (wyi − wz) ≥ η − ξi,∀z ̸= yi for each
training example i, only one of them is active in the final solu-
tion, i.e., the one corresponding to maxz ̸=yi p(z|xi), which we
call the active constraints. Formally, active constraints are con-
straints that have positive Lagrange multipliers in the dual. Our
active working set algorithm iteratively adds active constraints
and removes inactive ones.

Specifically, we denote by A the current active training ex-
amples i and the corresponding active competing class z. We
further reduce the memory complexity on each iteration by di-
viding the training set into M small chunks Dc, c = 1, ..., M
and only use a single chunk in each iteration. We found that
keeping the chunks class balanced improved the convergence
rate of the final classifier (assuming the original training set is
balanced).

We use a parameter denoted by ϵ to trade-off between train-
ing accuracy and training speed. When ϵ = 0, the active work-
ing set algorithm finds exactly the same solution as solving the
LP directly. In step 4, Algorithm 1 optimizes the objective of
PLM (7) subject to a subset of the constraints. Then in steps
5-14, the algorithm verifies that all the non-active constraints
are satisfied up to accuracy of ϵ. Constraints that are ϵ-violated
are added to the active set. Clearly, the smaller the value of
ϵ is, more constraints will be added to the active set, and the
algorithm will require more memory and time. On the other
hand, large values of ϵ yield only approximate solutions, which
are obtained in less time and using less memory. We observed
that the active working set algorithm often uses very small set
of constraints (i.e., the size of A) compared with the original
problem.

5. Experiments
We evaluated our model on the Vocal Joystick Vowel Cor-
pus [16] collected specifically for the VJ project. We created
a training set from 21 recording sessions (2 speakers appear
twice, although there is only partial overlap in their sounds),
a development set of 4 speakers, and a test set of 10 speakers1.
All speakers come from the earlier data collection efforts de-
scribed by Kilanski et. al. [16] and capture the wide variability
in human vowel production.

We tested two conditions: 4-vowel (æ, A, u, i) classification
and 8-vowel (with additional four vowels: a, o, 1, e) classifi-
cation. For the 4-vowel case, there are approximately 275K

1The VJ corpus is available free online: http://ssli.
washington.edu/vj

http://ssli.washington.edu/vj
http://ssli.washington.edu/vj


training frames (1, 931 utterances), and for the 8-vowel case,
there are 550K frames (3, 867 utterances). The development set
was used to tune the parameters of the models, and the best pa-
rameters found in the development set were then applied to the
test set to get the test set results. The dev set includes frames
for 52K frames (385 utterances) 4-vowel task, and 109K frames
(777 utterances) for 8-vowel task. The test set has 116K frames
(716 utterances) for 4-vowel task and 236K (1432 utterances)
frames for 8-vowel task. In these tasks, each utterance con-
tains a single speaker uttering a single vowel. We used MFCCs
with first-order deltas yielding vectors with 26 distinct features
(frames were 25ms long with a 10ms shift) and we also varied
the number of frames in the feature window as well.

We used MOSEK [5] as our base LP solver, and
in the 8-vowel classification task we used the active
working set algorithm introduced in Sec. 4 to over-
come the memory issue when using the solver directly.
The mapping function ϕ(·) we used is ϕ(x1, ..., xn) =
(1, max(x1, 0), max(−x1, 0), ..., max(xn, 0), max(−xn, 0))
which ensures non-negativity and is very fast to compute. We
compared our model to two exponential models, a 2-layer
MLP and a Gaussian classifier using a single full-covariance
Gaussian per class. The RSC [2] was also compared in our
experiments.

The results of classification accuracy and the mean and
standard deviation of entropies of posteriors over all frames in
the development set are shown in Table 1, and the results for
test set are shown in Table 2 2. For most of the classifiers, as the
number of frames in the feature window grows, the classifica-
tion accuracy increase, except for Gaussian classifier (perhaps
because no regularization during training, such as shrinkage or
l2 on the Cholesky factorization, was used in this case).

For the 4-vowel task, PLM achieves the highest classifica-
tion accuracy most of the time on both development and test set.
It has similar classification accuracy performance to the MLP,
and outperforms RSC and Gaussian classifiers.

On the 8-vowel task, the classification accuracies of PLM
are no longer the best. One reason is that we use active learn-
ing set algorithm in this task with ϵ = 0.001, which yields
only an approximate solution. Also, as the number of classes
increase, better features (i.e., a different ϕ function) may be re-
quired for a linear classifier (we plan to pursue this in future
work). Nevertheless, PLMs still have better performance than
Gaussian classifiers, and also similar performances to RSC in
classification accuracy, and much better entropy properties. In-
deed, PLMs achieve high accuracy while achieving the highest
average posterior entropy in all cases.
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