
Part-of-Speech Tagging using Virtual Evidence and Negative Training

Sheila M. Reynolds and Jeff A. Bilmes
Department of Electrical Engineering

University of Washington
Seattle, WA 98195-2500

{sheila,bilmes}@ee.washington.edu

Abstract

We present a part-of-speech tagger which
introduces two new concepts: virtual evi-
dence in the form of an “observed child”
node, and negative training data to learn
the conditional probabilities for the ob-
served child. Associated with each word
is a flexible feature-set which can in-
clude binary flags, neighboring words, etc.
The conditional probability of Tag given
Word + Features is implemented using
a factored language-model with back-off
to avoid data sparsity problems. This
model remains within the framework of
Dynamic Bayesian Networks (DBNs) and
is conditionally-structured, but resolves
the label bias problem inherent in the con-
ditional Markov model (CMM).

1 Introduction

A common sequence-labeling task in natural lan-
guage processing involves assigning a part-of-
speech (POS) tag to each word in the input text.
Previous authors have used numerous HMM-based
models (Banko and Moore, 2004; Collins, 2002;
Lee et al., 2000; Thede and Harper, 1999) and
other types of networks including maximum entropy
models (Ratnaparkhi, 1996), conditional Markov
models (Klein and Manning, 2002; McCallum et
al., 2000), conditional random fields (CRF) (Laf-
ferty et al., 2001), and cyclic dependency networks
(Toutanova et al., 2003). All of these models make

use of varying amounts of contextual information.
In this paper, we present a new model which re-
mains within the well understood framework of Dy-
namic Bayesian Networks (DBNs), and we show
that it produces state-of-the-art results when ap-
plied to the POS-tagging task. This new model is
conditionally-structured and, through the use of vir-
tual evidence (Pearl, 1988; Bilmes, 2004), resolves
the explaining-away problems (often described as
label or observation bias) inherent in the CMM.

This paper is organized as follows. In sec-
tion 2 we discuss the differences between a hidden
Markov model (HMM) and the corresponding con-
ditional Markov model (CMM). In section 3 we de-
scribe our observed-child model (OCM), introduc-
ing the notion of virtual evidence, and providing an
information-theoretic foundation for the use of nega-
tive training data. In section 4 we discuss our exper-
iments and results, including a comparison of three
simple first-order models and state-of-the-art results
from our feature-rich second-order OCM.

For clarity, the comparisons and derivations in
sections 2 and 3 are done for first-order models us-
ing a single binary feature. The same ideas are then
generalized to a higher order model with more fea-
tures (including adjacent words).

2 Generative vs. Conditional Models

In this section we discuss the tradeoffs between the
generative hidden Markov model (HMM) and the
conditional Markov model (CMM). For pedagogical
reasons, the figures and equations are for first order
models with a single word-feature.

The HMM shown in Figure 1 includes a single

feature (the binary flag isCap) in addition to the
word itself. Each observation, oi = (wi, fi), is a
word-feature pair. Let o = {oi} be the observation
sequence and s = {si} be the associated tag (state)
sequence. The HMM1 factorizes the joint probabil-
ity distribution over these two sequences as:

P (s,o) =
∏

i

P (si|si−1)P (wi|si)P (fi|si)

Tag

Word

isCap

Figure 1: First order HMM.

A similar model often used for sequence label-
ing tasks is the conditional Markov model (CMM)
which reverses the arrows between the words and
the tags (Figure 2), and factorizes as:

P (s,o) =
∏

i

P (si|si−1, wi, fi)P (wi)P (fi)

Tag

Word

isCap

Figure 2: First order CMM.

Because the words and features are observed, this
model does not require that we compute the proba-
bility of the evidence, P (o), when finding the opti-
mal tag sequence. The tag-sequence s which max-
imizes the joint probability P (s,o) is the same one
that maximizes the conditional probability P (s|o).
The CMM, therefore, does not require that we model
the language, allowing us to focus on modeling the
conditional probability of the tags given the words.

The HMM has its advantages as well, principally
that it is easier to train than the CMM because it

1In this HMM, Word and isCap are independent given Tag,
but this need not be true in general.

factorizes the joint probability into simpler com-
ponents. The tables required for P (si|si−1) and
P (oi|si) are significantly smaller than the one for
P (si|si−1, oi) which may be difficult to estimate due
to either data sparsity or normalization issues. One
potential disadvantage of the HMM is that when it is
trained using a maximum likelihood procedure, it is
not necessarily encouraged to optimally classify tags
due to its generative nature. One solution is to train
the HMM using a discriminative procedure. Another
option is to use entirely different models.

A key disadvantage of the CMM is that it
makes critical statements about independence that
the HMM does not: the converging arrows at each
tag put the parent nodes (the previous tag and the
current observation) into causal competition and as
a result the model states that the previous tag is inde-
pendent of the current observation. In other words,
all states (tags) are independent of future observa-
tions (words). The CMM thus incorporates a strong
directional bias which does not exist in the HMM.

One way to eliminate this bias is to use a CRF
(Lafferty et al., 2001; McCallum, 2003), where fac-
tors over neighboring tags may use features from
anywhere in the observation sequence. The CRF
is discriminative and avoids label/observation bias
by using a model that is constrained only in that
the conditional distribution factorizes over an undi-
rected Markov chain. However, most popular train-
ing procedures for a CRF are time-consuming and
complex processes.

3 Using Virtual Evidence

Our goals in this work are to: 1) keep the discrimi-
native nature of the CMM to the extent possible; 2)
avoid label and observation bias issues; and 3) stay
entirely within the DBN framework where training
is relatively simple. We thus propose a new solu-
tion to the problem, which retains the discrimina-
tive conditional form of “tag given word” from the
CMM, but avoids label bias by temporally linking
adjacent tags in a new way. Specifically, we employ
virtual evidence in the form of a binary observed
child node, ci, between adjacent tags (Figure 3) or
a windowed sequence of tags. During decoding, this
node will always be observed to be equal to 1 (one).
Intuitively, this binary variable acts as an indicator of

Tag

Word

isCap

C

Figure 3: First order observed-child model (OCM)
with the tags connected in pairs.

tag-pair consistency. When the tag pairs are consis-
tent (as they are in real text), we should have a high
conditional probability that ci = 1; and when the
tag pairs are not consistent, the conditional probabil-
ity that ci = 1 should be low. With this conditional
distribution, observing ci = 1 during decoding ex-
presses a preference for consistent tag pairs.

The presence of this observed-child node results
in a term in the factorization of the joint probability
distribution that couples its parents:

P (c, s,o) ∝
∏

i

P (ci|si−1, si)P (si|wi, fi)

where ci is the observed-child node of tags si−1 and
si, and we omit the probability of the observations,
P (wi, fi) which do not affect the final choice of s.

By the rules of d-separation (Pearl, 1988), the ex-
istence of ci defined in this way means that the par-
ents (the adjacent tags) are not conditionally inde-
pendent given the child. This link between adja-
cent tags through an observed-child node allows for
a probabilistic relationship to exist between the ad-
jacent tags. Thus, future words can influence tags,
which is not true for the CMM. Whether or not a
relationship between tags will actually be learned,
however, will critically depend on how the model is
trained. In a graphical model, it is the lack of an
edge that ensures some form of independence; the
presence of an edge (or a path made up of two or
more edges) does not necessarily ensure the reverse.

3.1 Training

The introduction of virtual evidence into a graph-
ical model requires that careful thought be given
to the training process. If we were to naı̈vely add
ci = 1 to all samples of the training data, the model
would learn that ci is constant rather than random,
and therefore that it is independent of its parents,
si−1 and si. In other words, this naı̈vely-trained

model would assume that P (ci = 1|si−1, si) =
1 ∀ (si−1, si), and when used to tag the sentences
in the test-set (also labeled with ci = 1), it would
maximize this simplified joint probability in which
the relationship between si−1 and si has been lost:

P (c, s,o) ∝
∏

i

P (si|wi, fi)

In order to induce and thereby have the model
learn the relationship between the adjacent tags si−1

and si, the training has to be modified to include
samples that are labeled with ci = 0. The proba-
bility table P (ci = 1|si−1, si) should favor common
(consistent) tag-pairs with high probabilities, while
discouraging rare tag-pairs with low probabilities.

Although all observations (in both training and
test sets) are labeled with ci = 1, we hypothesize
an alternate set of observations labeled with ci = 0.
This alternate set will be the source of the negative
training data 2. It is a set of nonsensical sentences
with the same distribution over individual tags, i.e.
the same P (si), but in this set adjacent tags are in-
dependent. We denote the total number of training
samples by M . This is divided into positive train-
ing samples, M1, and negative training samples, M0,
with M1+M0 = M . The ratio of the amount of pos-
itive to negative training data should be the same as
the ratio of our prior beliefs about tag-pair consis-
tency, namely the ratio of P (ci = 1) to P (ci = 0).
With no evidence to support that one is more likely
than the other, one option is to use the strategy of
“assuming the least” and use a maximum entropy
prior, setting M0 = M1. More flexibly, we can de-
fine n to be the ratio of the two so that M0 = n ·M1.

Now we derive a method for training the condi-
tional probability table P (ci|si−1, si) in terms of the
pointwise mutual information between the adjacent
tags si−1 and si. We first rewrite the conditional
probability (henceforth abbreviated as p) as:

p = P (ci = 1|si−1, si) =
P (ci = 1, si−1, si)

P (si−1, si)

If the probabilities are maximum likelihood (ML)
estimates derived from counts on the training data,
we can equivalently write:

p =
N(ci = 1, si−1, si)

N(si−1, si)

2This use of implied negative training data is similar to the
“neighborhood” concept described in (Smith and Eisner, 2005)

where N(·) is the count function.
Expanding the denominator into two terms:

p =
N(ci = 1, si−1, si)

N(ci = 1, si−1, si) + N(ci = 0, si−1, si)

Without any negative training data (labeled with
ci = 0), this ratio would always evaluate to 1, and no
probabilistic relationship between si−1 and si would
be learned.

From the start, we have implicitly postulated a re-
lationship between adjacent tags. We now formally
state two hypotheses: H1 that there is a relationship
between adjacent tags which can be described by
some joint probability distribution P (si−1, si), and
the null hypothesis, H0, that there is no such rela-
tionship, i.e. si−1 and si are independent:

PH1
= P (si−1, si)

PH0
= P (si−1)P (si)

Now we can express the counts as follows:

N(ci = 1, si−1, si) = M1 · P (si−1, si)

N(ci = 0, si−1, si) = M0 · P (si−1)P (si)

where M1 is the total number of tokens in the (posi-
tive) training data, and M0 is the total number of to-
kens in the induced negative training data. We sub-
stitute M0 with n · M1 for the reasons mentioned
earlier, and simplify to obtain:

p =
P (si−1, si)

P (si−1, si) + nP (si−1)P (si)

which can be simplified to obtain:

p =
1

1 + n

[

P (si−1,si)
P (si−1)P (si)

]

−1

The ratio of probabilities in the denominator is the
ratio used in computing the pointwise mutual infor-
mation between si−1 and si. This ratio, which we
will call λ, is also the likelihood ratio between the
two previously stated hypotheses. Finally, we write
the conditional probability as a function of λ:

P (ci = 1|si−1, si) =
1

1 + nλ−1
=

λ

λ + n

where λ =
PH1

PH0

=
P (si−1, si)

P (si−1)P (si)
=

P (si|si−1)

P (si)

The conditional probability, P (ci = 1|si−1, si) is a
mapping g(λ) from λ ∈ [0,∞) to p ∈ [0, 1).

Beginning with (Church and Hanks, 1989), nu-
merous authors have used the pointwise mutual in-
formation between pairs of words to analyze word
co-locations and associations. This ratio tells us
whether si−1 and si co-occur more or less often than
would be expected by chance alone.

Consider, for example, the tags DT (determiner)
and NN (noun), and the four possible ordered tag-
pairs. The probabilities P (si) and P (si|si−1) de-
rived from the training data (see section 4.1), the
likelihood ratio score λ, the conditional probability
p = P (ci = 1|si−1, si), and the occurrence counts
N are shown in Table 1. As expected, the sequence
DT-NN (e.g. the surplus) occurs very often and gets
a high score, while DT-DT (e.g. this a) and NN-
DT (e.g. surplus the) occur infrequently and get low
scores. The sequence NN-NN (e.g. trade surplus)
gets a neutral score (λ ≈ 1) indicating that if the pre-
ceding word is a noun, the likelihood that the current
word is a noun is nearly equal to the likelihood that
any randomly chosen word is a noun.

We present two methods for inducing the negative
training counts that are required to train the condi-
tional probability table for P (ci|si−1, si).

In the first method, we generate “nonsense” sen-
tences by randomly scrambling each sentence in the
training-set n times, using a uniform distribution
over all possible permutations. This results in n

negative training sentences for each positive training
sentence and therefore M0 = n·M1. Effectively, the
ratio of priors on ci is now:

P (ci = 1)

P (ci = 0)
=

M1

M0
=

1

n

The conditional probability table P (ci|si−1, si) is

si−1-si P (si) P (si|si−1) λ p N

DT-NN 0.129 0.4905 3.80 0.79 37301
NN-NN 0.129 0.1270 0.98 0.49 15571
NN-DT 0.080 0.0071 0.09 0.08 870
DT-DT 0.080 0.0018 0.02 0.02 134

Table 1: Sample likelihood ratio scores (λ), proba-
bilities, p (for n = 1), and counts for four tag-pairs.

then trained using all n+1 versions of each sentence,
thus inducing the desired dependence between si−1

and si. The method of scrambling sentences n-times
only approximates the theory described above be-
cause it is performed on a sentence-by-sentence ba-
sis rather than across the entire training set. Also, the
resulting negative training data represents only n re-
alizations of a random process, so the total number
of samples may not be large enough to approximate
the underlying distribution.

In the second method, rather than generate the
negative training data in the form of scrambled sen-
tences, we compute the negative-training counts di-
rectly, based on the positive unigram counts and the
hypotheses presented in section 3.1. For example,
the negative bigram counts are a function of the
marginal probability of each tag, P (si):

N(ci = 0, si−1, si) = nM1 · P (si−1)P (si)

Negative unigram and trigram counts are computed
in a similar fashion, and then the conditional proba-
bility table is derived as a smoothed back-off model
directly from the combined sets of counts.

These two methods are conceptually similar but
may exhibit subtle differences: one is randomizing
at the sentence level while the other operates over
the entire training set and does not have the same
sensitivity to small values of n.

4 Experiments and Results

In this section we describe our experiments and the
results obtained. Sections 4.1 and 4.2 describe the
data sets and features. Section 4.3 presents compar-
isons between several simple models using just the
tags, the words, and a single binary feature for each
word. Section 4.4 presents results from a feature-
rich second-order observed-child model in which
tags are linked in groups of three.

All training of language models is done using the
SRILM toolkit (Stolcke, 2002) with the FLM exten-
sions (Bilmes and Kirchhoff, 2003), and the imple-
mentation and testing of the various graphical mod-
els is carried out with the help of the graphical mod-
els toolkit (GMTK) (Bilmes and Zweig, 2002).

4.1 Data Sets

The data used for these experiments is the Wall
Street Journal data from Penn Treebank III (Mar-

cus et al., 1994). We extracted tagged sentences
from the parse trees and divided the data into train-
ing (sections 0-18), development (sections 19-21),
and test (sections 22-24) sets as in (Toutanova et al.,
2003). Except for the final results for the feature-
rich model, all results are on the development set.

4.2 Features

The tagged sentences extracted from the Penn Tree-
bank are pre-processed to generate appropriately-
formatted training data for the SRILM toolkit, as
well as the vocabulary and observation files to be
used during testing.

The pre-processing includes building a dictionary
based on the training data. All words containing
uppercase letters are converted to lowercase before
being written to the dictionary. Words that occur
rarely are excluded from the dictionary and are in-
stead mapped to a single out-of-vocabulary word.
This is based on the idea from (Ratnaparkhi, 1996)
that rare words in the training set are similar to un-
known words in the test set, and can be used to learn
how to tag the unknown words that will be encoun-
tered during testing. In this work, rare words are
those that occurr fewer than 5 times. The dictio-
nary also includes special begin-sentence and end-
sentence words, as well as punctuation marks, re-
sulting in a total of 10,824 words. A list of the 45
tags found in the training data is also created, and
is similarly augmented with special begin-sentence
and end-sentence tags, for a total of 47 distinct tags.

Each word has associated with it a set of features.
During training, these features are used to learn a
smoothed back-off model for P (si|wi, fi) (where fi

is a vector of features associated with word wi).
The following five binary flags, taken from

(Toutanova et al., 2003), are derived from the cur-
rent word wi and used as features :

• is-capitalized (refers to the first letter only);
• has-digits (word contains one or more digits);
• is-hyphenated (word contains ‘-’);
• is-all-caps (all letters are capitalized);
• is-conjunction (true if is-all-caps, has-digits,

and is-hyphenated are all true, for example
CFC-12 or F/A-18).

Prefixes and suffixes are also known to be infor-
mative and so we add a prefix-feature and a suffix-

feature to our set. Previous work used all possible
prefixes and suffixes ranging in length from 1 to k

characters, with k = 4 (Ratnaparkhi, 1996), and
k = 10 (Toutanova et al., 2003). This method re-
sults in very long lists of thousands of suffixes and
prefixes. In this work, we instead analyzed the rare
words in the training data to generate shorter lists of
informative prefixes and suffixes, with lengths be-
tween 1 and 7 characters. Each prefix/suffix was
scored based on the number of times it appeared
with a particular tag, and all prefixes/suffixes that
scored above 20 (an arbitrarily chosen threshold)
were kept. This process resulted in two separate
lists: one with 377 prefixes, and the other with 704
suffixes. Each word is then assigned a single pre-
fix feature and a single suffix feature from these
lists (which both include an entry for “unknown”).
When assigning prefix and suffix features to the rare
words (in the training data) or the unknown words
(in the test data), we assume that the longest string is
the most informative. (This may not necessarily be
true: for example, although the suffix ing is certainly
more informative than g, it is less clear whether ulat-
ing would be more or less informative than ing.)

We also include the two adjacent words as fea-
tures of the current word. Our model provides great
flexibility in the choice of features to be included
in the current word’s feature-set. This feature-set is
not limited to binary flags and indeed can include
anything that can be extracted from the observa-
tion sequence in the pre-processing stage. By using
a smoothed back-off model, issues related to data-
sparsity and over-fitting are avoided.

4.3 First Order Model Comparisons

In this section we compare results obtained from
three first-order models: HMM, CMM, and OCM,
using a Naı̈ve Bayes (NB) model as a baseline. The
Naı̈ve Bayes model is a zeroth-order model with no
connection between adjacent tags, while the first-
order models connect adjacent tags in pairs. (Note
that the HMM in this case is just a “temporal” NB
since given the tag, the features are independent.) In
these experiments, the only feature used is the is-
capitalized flag (the most informative of the binary
flags tested). The results are shown in Table 2.

The conditional probability tables (CPTs) for
the CMM and the OCM were generated using the

model token known-w. unk.-w.
type accur. accur. accur.

Naı̈ve Bayes 90.56% 93.83% 43.4%
OCMn=0 90.89% 94.07% 45.2%
CMM 93.23% 95.69% 57.9%
OCMn=1 93.94% 96.39% 58.6%
HMM 94.30% 96.53% 62.3%
OCMn=4 94.42% 96.63% 62.7%

Table 2: Scores for first order models.

factored language model (FLM) extensions to the
SRILM toolkit, wth generalized parallel backoff
and Witten-Bell smoothing. (Modified Kneser-Ney
smoothing could not be applied because some of the
required low-order meta-counts needed by the dis-
count estimator were zero.) The negative training
data for the OCM was generated using the scram-
ble method, with values of n as in the table. When
no negative training data is used (n = 0), the CPT
for the observed-child shows a very weak depen-
dence on the specific tag-pair (si−1, si): the proba-
bility values in the tag-bigram model range only be-
tween 0.89 and 1. This weak dependence results in
performance comparable to that of the Naı̈ve Bayes
model. That there is any dependence at all is due to
the smoothing since ci = 0 is never observed in the
training data. With negative training data (n = 4),
there is a much stronger dependence on the tag-pair,
and the values for P (ci = 1|si−1, si) range between
0.0002 and 1.

We found experimentally that the OCM reached
peak performance with n = 4 and that for larger n

the performance stayed relatively constant: the vari-
ation for values of n up to 14 was only 0.05%.

4.4 Feature-Rich Second-Order OCM

In this section we describe the results obtained from
a more complex second order OCM with the addi-
tional word features described in section 4.2.

This model is illustrated in Figure 4 which, for
clarity highlights the details only for one (tag,word)
pair. The observed-child node, ci, now has three par-
ents: the tags si−1, si, and si+1. Each tag, si, in
turn has K + 1 parents: the current word, wi, and
a set of K features (shown bundled together). The
model switches between the two feature bundles as

model description token known-word unknown-word
accuracy accuracy accuracy

OCM-I, scramble, n = 4 96.39% 96.87% 89.5%
OCM-I, computed counts, n = 4 96.41% 96.90% 89.3%
OCM-I, computed counts, n = 1 96.41% 96.92% 89.0%
OCM-II, computed counts, n = 1 96.64% 97.12% 89.5%
OCM-II, as above, on test-set 96.77% 97.25% 90.0%

Table 3: Tagging accuracy using the feature-rich 2nd order observed-child model.

illustrated, based on the current word. For known
words, a small set of features is used, while a much
larger set of features is used for unknown words.
This switching increases the speed of the model at
no cost: the additional features increase the tagging
accuracy for unknown words but are redundant for
known words.

This model factorizes the joint probability as:

P (c, s,o) ∝
∏

i

P (ci|si−1, si, si+1)P (si|wi, fi)

where fi is the appropriate feature bundle for word
wi, depending on whether wi is known or unknown.

ci

si-1 si
si+1

wi

known-word features

unknown-word features

Figure 4: Second order OCM with tags connected in
triples and switching sets of word features.

Two sets of experiments were performed using
two models, which we will refer to as OCM-I and
OCM-II. Both of these are second order models
(connecting tags in triples), but with different sets
of features. In model OCM-I, the only feature used
for known words is the is-capitalized flag used in
section 4.3. The unknown words use a total of seven
features: suffix, prefix, and all five of the binary flags
described in section 4.2. Model OCM-II adds the ad-

jacent words (wi−1 and wi+1) to the feature-set for
both known and unknown words.

As seen above, the model factorizes the joint
probability into two conditional probability terms.
Each of these CPTs is implemented as a smoothed,
factored-language back-off model.

The observed-child CPT uses generalized back-
off, combining at run-time the results of backing off
from each of the three parents if the specific tag-
triple is not found in the table. The tag CPT uses
linear backoff, dropping the adjacent words first.
The backoff order for the other features was cho-
sen based on experiments to determine the relative
information content of each feature. This resulted
in the following backoff order: prefix, has-digit, is-
conjunction, is-all-caps, is-hyphenated, suffix, is-
capitalized, word (where the least informative fea-
ture, prefix, is the first feature to be dropped).

Results from these experiments are shown in Ta-
ble 3. Except for the last line, which reports results
on the test set, all results are on the development
set. The first three lines show results obtained from
OCM-I (without adjacent word features). The two
methods of generating negative training data yield
nearly identical results, showing that they are com-
parable. Comparing rows 2 and 3 in the table we see
that the computed-counts method is relatively insen-
sitive to the value of n (for n ≥ 1).

OCM-II, which uses the adjacent words as fea-
tures for both known and unknown words further
improves overall accuracy, and produces state-of-
the-art results. The token-level accuracy result ob-
tained from the OCM-II model on the development
set (96.64%) can be directly compared to an accu-
racy of 96.57% reported in (Toutanova et al., 2003)
for a cyclic dependency network using similar word
features and the same three tag context.

5 Conclusions

In this paper, we have introduced two new concepts
to the problem of part-of-speech tagging: virtual evi-
dence and negative training data. We have moreover
shown that this new model can produce state-of-the-
art results on this NLP task with appropriately cho-
sen features. The model stays entirely within the
mathematically formal language of Bayesian net-
works, and even though it is conditional in nature,
the model does not suffer from label or observa-
tion (or directional) bias. Staying within this frame-
work has other advantages as well, including that
the training procedures remain within the relatively
simple maximum likelihood framework, albeit with
appropriate smoothing. We believe that this model
holds great promise for other NLP tasks as well as in
other applications of machine-learning such as com-
putational biology. In particular the way it factor-
izes the joint probability into a “horizontal” com-
ponent which connects various nodes to the virtual-
evidence node, and a “vertical” component (used
here to link a tag to a set of observations), provides
great simplicity, flexibility, and power.

6 Acknowledgements

The authors would like to thank the anonymous re-
viewers for their constructive comments. Sheila
Reynolds is supported by an NDSEG fellowship.

References

Michele Banko and Robert C. Moore. 2004. Part of
Speech Tagging in Context. Proceedings of COLING.

Jeff Bilmes. 2004. On Soft Evidence in Bayesian Net-
works. Tech. Rep. UWEETR-2004-0016, U. Wash-
ington Dept. of Electrical Engineering, 2004.

Jeff Bilmes and Katrin Kirchhoff. 2003. Factored lan-
guage models and generalized parallel backoff. Pro-
ceedings of HLT-NAACL: Short Papers, 4-6.

Jeff Bilmes and Geoffrey Zweig. 2002. The graphi-
cal models toolkit: An open source software system
for speech and time-series processing. Proceedings of
ICASSP, vol4, 3916-3919.

Kenneth W. Church and Patrick Hanks. 1989. Word As-
sociation Norms, Mutual Information, and Lexicogra-
phy. Proceedings of ACL, 76-83.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Experi-
ments with Perceptron Algorithms. Proc. EMNLP.

Dan Klein and Christopher D. Manning. 2002. Condi-
tional Structure versus Conditional Estimation in NLP
Models. Proceedings of EMNLP, 9-16.

John Lafferty, Andrew McCallum and Fernando Pereira.
2001. Conditional Random Fields: Probabilistic Mod-
els for Segmenting and Labeling Sequence Data. Pro-
ceedings of ICML, 282-289.

Sang-Zoo Lee, Jun-ichi Tsujii and Hae-Chang Rim.
2000. Part-of-Speech Tagging Based on Hidden
Markov Model Assuming Joint Independence. Pro-
ceedings of 38th ACL, 263-269.

Mitchell P. Marcus, Beatrice Santorini and Mary A.
Marcinkiewicz. 1994. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19:313-330.

Andrew McCallum. 2003. Efficiently Inducing Features
of Conditional Random Fields. Proceedings of UAI.

Andrew McCallum, Dayne Freitag and Fernando Pereira.
2000. Maximum-Entropy Markov Models for Infor-
mation Extraction and Segmentation. Proc. 17th In-
ternational Conf. on Machine Learning, 591-598.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. EMNLP 1, 133-142.

Noah A. Smith and Jason Eisner 2005. Contrastive Es-
timation: Training Log-Linear Models on Unlabeled
Data. Proceedings of ACL.

Andreas Stolcke. 2002. SRILM – an extensible language
modeling toolkit. Proc. ICASSP, vol 2, 901-904.

Scott M. Thede and Mary P. Harper. 1999. A Second-
Order Hidden Markov Model for Part-of-Speech Tag-
ging. Proceedings of 37th ACL, 175-182.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-Rich Part-of-
Speech Tagging with a Cyclic Dependency Network.
Proceedings of HLT-NAACL, 252-259.

