Complexity of Finding Embeddings in a k-Tree
S. Arnborg, D. G. Corneil, and A. Proskurowski

Graphical Models Reading Group
Presented by Chris Bartels
University of Washington
Department of Electrical Engineering
January 29, 2004
Overview

- Computer Science Background
- Graph Theory Background
- PARTIAL K-TREE is NP-complete
- Recognition of partial k-trees for fixed k
Overview

- Computer Science Background
 - Turing Machines
 - Classes P and NP
 - Reductions
 - NP-Completeness
 - NP-hard

- Graph Theory Background
 - PARTIAL K-TREE is NP-complete
 - Recognition of partial k-trees for fixed k
Turing Machines
Alan Turing, 1936

Our mathematical model of a computer

Defined by

- A set of states, Q
- Special states, $q_{\text{start}}, q_{\text{accept}}, q_{\text{reject}}$
- An infinite memory “tape”
- Input alphabet, Σ, tape alphabet, Γ
- A transition function,

 $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
Turing Machines

- Turing machines provide binary answers
 - q_{accept}, q_{reject}, or never stop running
- We will only deal with TMs that are *deciders*
- The set of input strings a TM accepts is its *language*
- Functionality usually described on a high level
Turing Machines

- Provides a model for what can/can’t be done on a real computer
- Variations on the Turing machine as well as completely different models
 - Can’t do things Turing machines can’t
 - Differences are polynomial in space and time
The class P

- Class of problems solvable by a polynomial time TM
- That is, can be solved in an amount of time that is polynomial in the length of the input
 - PATH: Given a graph, is there a path from s to t
 - PRIME: Given an integer, is it a prime number
- The class P is only decision problems
The class NP

- Class of problems solvable by a non-deterministic polynomial time TM
- When you don’t know what to do, run all options in parallel
- If any branch *accepts*, the machine *accepts*
- If all branches *reject*, the machine *rejects*
- Total time is the time of longest branch
The class NP

- Also, the class of languages that have polynomial time verifiers

- Examples:
 - HAMPATH
 - SAT
 - CLIQUE

- \simHAMPATH does not appear to be in NP
P vs. NP

- For some problems we can prove that they take an exponential amount of time, \(\text{EXPTIME} \)

- We can prove that:
 \[
 P \subseteq \text{NP} \subseteq \text{EXPTIME}
 \]

- It is speculated that:
 \[
 P \subset \text{NP} \subset \text{EXPTIME}
 \]
Reductions

- Language A is reducible to language B

 $A \leq_{p} B$

- $A \leq_{p} B$ iff there exists a function

 $f : \Sigma^{*} \rightarrow \Sigma^{*}$

 where for every

 $\omega \in A \iff f(\omega) \in B$

- Example 3SAT \leq_{p} CLIQUE

 3SAT = \{ $\langle \phi \rangle$ | ϕ is a satisfiable 3-cnf formula \}

 CLIQUE = \{ $\langle G, k \rangle$ | G is a graph with a k-clique \}
NP-Completeness

Cook-Levin

A language A is NP-complete if:

- A is in NP
- All other languages in NP $\leq_p A$

Beginning with a language and an input, we can form a Boolean equation that is true iff the input is in the language

If a language is in NP, the equation can be written in polynomial time

SAT is NP-complete
Suppose CLIQUE \in P

If CLIQUE \in P then $P=NP$. How?

- Start with NP-complete language A
- Reduce to Boolean formula
- Reduce to 3-cnf Boolean formula
- Reduce to graph
- Use magical CLIQUE solver to get answer
NP-Hard

- A problem is NP-hard if:
 - All problems in NP are polynomial time reducible to it
- NP-hard problems do not have to be in NP
- Do not have to be decision problems
- Often the optimization version of a NP-complete decision problem
 - Finding optimal k-tree vs. does the graph have a k-tree
Overview

- Computer Science Background
- Graph Theory Background
 - Triangulation and k-trees
 - Elimination
 - Chain Graphs
 - Minimum cut linear arrangement
- PARTIAL K-TREE is NP-complete
- Recognition of partial k-trees for fixed k
Triangulation and k-trees

- A graph is triangulated if
 - All cycles of length ≥ 4 have a chord
 - Iff it has a perfect elimination order
 - Iff it has a Junction Tree
 - ect...

- A k-tree
 - Triangulated with all max cliques size k

- A partial k-tree
 - Any subgraph of a k-tree
Triangulated graphs are magic

- Many NP-hard problems become polynomial on triangulated graphs
- Finding the maximal cliques
Lemma 2.1

- $k_t(G) = k_c(G)$
 - Minimum k such that G is a partial k-tree is equal to minimum maxclique size of all triangulations
- Interested in k-trees because we want to minimize calculations in the junction tree algorithm
- Prove that the problem is NP-hard and therefore unlikely to have a shortcut
Elimination

- Algorithm
 - Elimination always yields triangulated graphs
- Perfect elimination orderings
 - Triangulated graphs always have many perfect elimination orderings
- Not all triangulations are obtainable by an elimination ordering
 - All edge minimal triangulations are obtainable by elimination
Chain Graphs

- Bipartite graphs: \(G = (A \cup B, E) \)

- A chain graph
 - There exists an ordering s.t.
 \[
 #(u) < #(v) \text{ iff } \Gamma(u) \supseteq \Gamma(v)
 \]

- \(C(G) \) is formed by completing \(A \) and \(B \)

- A bipartite graph is a chain graph iff \(C(G) \) is triangulated
Minimum Cut Linear Arrangement

\[C_\#(G) = \max_i \mid \{(u,v) \in E: \#(u) \leq i < \#(v)\}\]

\[\text{MCLA} = \{<G,k> \mid \text{Is there an arrangement s.t.} \ c_\#(G) \leq k\} \]
Blocks of a graph

- Blocks are sets of nodes that have the same neighborhood, $\Gamma(u)$

Lemma 3.1

- H is a minimal triangulation of G. There exists an elimination order which is block contiguous in both G and H s.t. H is the triangulation of G w.r.t. this order.
Reduction from MCLA to PARTIAL K-TREE

- Give mapping function
- If $C(G')$ is a a partial k'-tree:
 - There exists a block contiguous elimination order, π', s.t. no vertex has degree $> k'$ when eliminated.
 - F is the filled graph after elimination in order π'
 - We can choose π' to be any perfect elimination order of F (*might have to assume F is minimal*)
Reduction from MCLA to PARTIAL K-TREE

- F is chordal, so it is a chain graph
- F has a perfect elimination order which is the reverse chain ordering & is block contiguous. Choose one of these for π'.
- π is ordering of blocks in π', also the ordering of the original nodes in G
Reduction from MCLA to PARTIAL K-TREE

Consider the graph after eliminating the first \((i-1)\) blocks of \(C(G')\). Each vertex in \(A_i\) is adjacent to:

- \(\Delta(G)\) other vertices in \(A_i\)
- \(\Delta(G)+1\) other vertices in \(A_{i+1} A_{i+2} \ldots A_{|V|}\)
- \(\Delta(G)+1-\text{deg}(j)\) vertices in \(B_j\) for \(j=1\ldots|l|\)
- 2 vertices, \(B_e\), for each edge connected to a vertex in \(\{1,\ldots|l|\}\)
Reduction from MCLA to PARTIAL K-TREE

- The vertices in A contribute
 \[\Delta(G) + (\Delta(G) + 1)(|V| - i) \]

- The vertices in B contribute
 - Consider the -deg(j) term
 \[
 \text{sum(deg(j), j=1...I) = } 2|E_2^i| + |E_1^i|
 \]
 - Were \(|E_2^i|\) has both vertices in \(\{1,...,I\}\)
 - Were \(|E_1^i|\) has one vertex in \(\{1,...,I\}\)
 \[
 (\Delta(G) + 1)I - (2|E_2^i| + |E_1^i|) + (2|E_2^i| + 2|E_1^i|)
 \]
Reduction from MCLA to PARTIAL K-TREE

- Simplifies to:
 \[(\Delta(G)+1)(|V|+1)-1+|E_1^i|\]

- \(|E_1^i|\) is the number edges with one vertex in \(\{1,\ldots,i\}\) and one vertex in \(\{i+1,\ldots,|V|\}\)

- Therefore, \(C(G')\) is a partial \(k'\)-tree implies \(G\) has a minimum linear cut value \(k\)
Reduction from MCLA to PARTIAL K-TREE

- Assume G has a minimum linear cut value \(k \).
- There exists a \(\pi \) which gives \(\pi' \).
- The largest clique in F has size \(k' + 1 \).
PARTIAL K-TREE in NP-complete

- PARTIAL K-TREE is in NP
 - Give an elimination order s.t. the elimination graph is k-chordal
Reduction from MCLA to PARTIAL K-TREE

- $\text{deg}(x)$: degree, number of neighbors of node x
- $\Delta(G)$ maximum degree of all nodes