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ABSTRACT
We present speech recognition graphical models that use

“focused evidence” to directly influence word and state tran-
sition probabilities in an explicit graphical-model represen-
tation of a speech recognition system. Standard delta and
double delta features are used to detect loci of rapid change
in the speech stream, and this information is applied directly
to transition variables in a graphical model. Five different
models are evaluated, and results are given on the highly
mismatched training/testing condition tasks in Aurora 3.0.
The best of these models gives an average 8% reduction in
word error rate over baseline, significant at the 0.05 level.

1. INTRODUCTION

Conventional hidden Markov model (HMM) based auto-
matic speech recognition (ASR) systems are composed of
a chain of pairs of random variables, where each pair com-
prises a hidden “state” variable and its associated observa-
tion variable. These hidden variables often use a single in-
teger value to simultaneously represent a variety of infor-
mation — this includes position within a word or sentence,
word identity, lexical variant, word history, and so on. The
resulting state transition table is thus not only a set of condi-
tional probabilities, but it is also a representation of the al-
lowed sequences of these complex states. Often, the hidden
information is hierarchically structured (forming essentially
a hierarchical HMM) where word, sub-word, state, and sub-
state are represented separately but are flattened into a single
network before recognition takes place.

An explicit graphical model (GM) representation of a
speech recognition system, on the other hand, expresses
this same information as a diverse network of latent ran-
dom variables. Each of these variables has a straightforward
meaning and a simple relationship to the other variables in
the graph ,and many of these relationships are determin-
istic. For example, in Figure 2(a) there are separate vari-
ables modeling the word, word transition, position within
the word, state transition, state, and acoustic observation
[1, 2]. Such a representation exposes high-level informa-
tion that is normally flattened into a single hidden variable
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and transition matrix. As such, this gives us the opportu-
nity to “focus” highly tuned transformations of the speech
signal directly on high-level portions of the speech recog-
nition system, rather than indirectly via the lowest-level (or
a flattened) state variable using either an appendage to or
substitution in a feature vector. We have called this the fo-
cused approach, and have successfully applied this idea in
[3], where acoustics are used to directly influence the word
vs. silence hypothesis in an ASR system.

In this work, we introduce a new ASR model under the
focused approach where acoustic/spectral transition infor-
mation is used to directly influence hidden variables in a
GM-based ASR system that indicate various forms of tran-
sition, namely inter-word transition and intra-word (or inter
word-constituent) transition. Specifically, we focus stan-
dard delta and double-delta features directly on transition
variables in addition to using it as an appendage in a regular
MFCC-based feature vector. We apply this approach to the
Aurora 3.0 noisy-speech corpus, in the highly-mismatched
training/testing conditions, and find that we can achieve sig-
nificant word-error (WER) reductions relative to a baseline
state-of-the-art system.

Clearly, the use of delta and double-delta information in
ASR is not new — what is new here, rather, is the manner
in which it is employed. Indeed, the use of transition in-
formation has a long history of improving automatic speech
recognition accuracy. In [4] polynomial expansion coeffi-
cients were used as part of a speaker verification system and
[5] used delta features (calculated from a simple difference)
to weight distances in a dynamic time warping isolated-
word recognizer. The work in [6] used delta features as
an augmentation of the feature vector in an HMM recog-
nizer which is the manner that they are predominantly used
today. It was demonstrated in [7] that delta features ap-
pended to the feature vector help in noisy conditions and
in particular under the Lombard effect. Perceptual experi-
ments have shown that transitional periods in speech play
a role in human speech perception that may be more sig-
nificant than stationary periods [8]. Double-delta features
have been used since [9, 10]. Moreover, work such as [11]
and [12] place the statistical focus of a speech recognizer di-
rectly on these transitional regions. Without a doubt, the use
of time-derivative features is now a necessary component in



any modern speech recognition system.
The rest of this paper presents our new models that have

the potential to take even better advantage of this informa-
tion: Section 2 describes our general approach, Section 3
overviews our Aurora 3.0 setup, Section 4 describes each of
our new graphical models in detail, Section 5 give results,
and, lastly, Section 6 concludes.

2. FOCUSED EVIDENCE TRANSITION MODELS

Hidden variables that represent transition in an explicit GM-
based ASR system are bound to indicate either acoustic sig-
nal change or at the very least indicate a forced evolution
of the model towards the completion of an utterance. Con-
sider, for example, the two binary indicator variables word
transition Wtr

t
and state transition Str in Figure 2(a) — the

variable Wtr

t
(resp. Str) indicates movement from one word

(resp. sub-word state) to the next. Normally, the influence
that the acoustics has on these transition variables must oc-
cur indirectly via the state variable. This means that for a
transition event, from say state i to j, to be encouraged, the
acoustic feature vectors over one length-` time region (Os

τ
,

τ = t − `, . . . , t − 1) should be correlated with one state
value (say Sτ = i), and the vectors over the next length-r
region (Os

τ
, τ = t, . . . , t + r − 1) should be correlated with

another state value (Sτ = j). This approach, which is also
the case in standard HMM-based ASR systems, need not be
the most efficient way to transfer information from acoustic
transitions to the transition events with which they should
ideally correlate.

A more focused (and likely more efficient) approach is
to have acoustic transition information directly influence the
transition events in a speech recognition system, something
that might also improve the alignments represented by the
Viterbi decodings. This idea can be easily done in the GM-
framework as shown in Figures 2(b) through Figures 2(f).
Of course, there are many possible signal-processing choices
for a measure of acoustic transition information to be used
as additional observations. In this work, we choose first
to evaluate standard delta and double-delta features in this
manner, already used in an ASR system via the state vari-
able. In other words, we use delta and double-delta features
both to augment the standard MFCC-based feature vector,
and also to directly influence transition events, and we do
so for the following reason: Figure 1 demonstrates the be-
havior of the delta features over an instance of the German
word ”sieben”. A line showing the sum of the vector of the
magnitude of first order deltas generated from 13 MFCC
coefficients is superimposed over a spectrogram of the au-
dio waveform. One can observe peaks in the delta features
at spectral changes, phonetic boundaries, and (at least on
Aurora 3.0) word boundaries. Therefore, when wishing to
directly influence either word or state transition in an ASR
model, delta and double delta features (and specifically peak
detection) are likely to be beneficial. Note that we expect
double deltas to be useful because a small value for the sec-
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Fig. 1. Sum of delta magnitudes overlaid on the spectro-
gram of the German word ”sieben”.

ond derivate indicates a peak in the first derivative.
One possible criticism of these models is that they in-

corporate delta features at multiple observations, and thus
creates an unnormalized product model. The use of such
a model could loose some of the sufficient conditions that
are theoretically available during parameter training which
guarantee convergence to a local maxima of the likelihood
function. We have empirically found, however, that likeli-
hood values continue to increase monotonically when train-
ing these models using standard expectation-maximization
(EM) training. Interestingly, this issue is not dissimilar to
the state of affairs in standard HMM-based speech recog-
nition training, where successive features vectors are con-
structed from windows of the underlying speech signal that
overlap by 15 out of the typically 25ms window width. More-
over, the use of deltas in a feature vector to begin with
doubly presents the acoustic information to the HMM sys-
tem, since the delta features are a deterministic function of
the original features. Arguably, in such systems acoustic
evidence is already “double counted” but we continue to
see monotonic likelihood increases. Lastly, training using
a likelihood cost criterion is not ideal either, as we really
desire a discriminatively formed model — a wrong model
from a generative perspective might work quite well when
used as a classifier [2]. In any event, we use these models
as is, and agree that more theoretical work is needed in this
area to justify these empirical successes.

3. CORPUS AND EXPERIMENTAL SETUP

We use the Aurora 3.0 corpus for all experiments in this
paper. This corpus has digit recognition tasks in Danish,
Finnish, German, and Spanish recorded under varying noise
conditions. Danish and German have 11 words, while Finnish
and Spanish have 10. Aurora 3.0 has three types of train-
ing/testing conditions: well-matched, medium-matched, and
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Fig. 2. Dynamic Bayesian Networks that use ”focused” evidence to predict state transitions. Solid edges represent deter-
ministic relationships, wavy edges are probabilistic relationships, and dashed edges are switching parents [13] whose values
select a subset of the other edges. Hollow circles are hidden variables and filled circles are observed.



highly-mismatched. We choose to evaluate the quality of
our systems using the latter case. The reason for this is be-
cause highly mismatched train and test conditions are gen-
erally perceived as the most realistic environment an auto-
matic speech recognition (ASR) system must operate in.

The features are 13 dimensional MFCCs created at 10ms
intervals using a 25ms Hamming window and a bank of
mel-filters between 64 Hz and 4000 Hz. 13 delta features
and 13 double delta features were also created. The features
then received MVA post-processing (mean subtraction, vari-
ance normalization, and ARMA filtering) [14]. MVA post-
processing has been shown to give strong results on Aurora
3.0; therefore, our baseline results are already fairly good
on this corpus [14, 15].

In all experiments the state observation (labeled Os) uses
all 39 features, and its distribution is modeled as a 16 com-
ponent Gaussian mixture model trained by maximizing the
likelihood using EM. The baseline system is an HMM us-
ing only Os and can be seen in Figure 2(a) [2]. Whole word
models are used with 16 states per word, plus 3 states for a
silence word, plus 1 state for short pause.

4. NEW FOCUSED MODELS

We evaluated a number of models that focus acoustic tran-
sition information directly on an ASR system’s transition
events. This section describes them all in detail.

The first new model, seen in Figure 2(b), is called the
Word Transition model. It has an observation (labeled Owt)
conditioned on word and word transition. Owt uses only the
13 delta and 13 double delta features, and the model scores
these features using only a single Gaussian component. This
gives 26 (for Danish and German) or 24 (for Finnish and
Spanish) additional single component 26 dimensional Gaus-
sians. The Owt Gaussians are also trained using maximum
likelihood, but during their training the Os Gaussians are
initialized to the parameters that were learned for the base-
line model and are held fixed. The transition probabilities,
p(Ptr|P), however, are allowed to change while the tran-
sition Gaussians are training. This allows the new transi-
tion distributions to influence p(Ptr|P). In initial experi-
ments this training method performed better than allowing
the baseline parameters to change while the parameters for
the additional Gaussians are training.

The next model is called Word Plus Next Word and is
shown in Figure 2(c). When there is no word transition,
Owt is conditioned only on the current word. When there
is a word transition, there are separate models dependent on
the class of the next word. More precisely, for each word
there is a model for transitioning from the word to silence,
from the word to any other word (all grouped into one class),
and from the word to a short pause. Silence and short pause
are only allowed to transition into a word, so they have one
model apiece. This is implemented in the graph using a
backward time link from Wt+1 to Wt. This model has a
total of 35 (for Danish and German) or 32 (for Finnish and

Spanish) Gaussian components not in the baseline system.
The third model is known as the State Transition model

and is shown in Figure 2(d). This model contains an ob-
servation Ost containing the 13 delta and 13 double-delta
features and uses a 26 dimensional single component Gaus-
sian that is trained in the same way as Owt. In State Tran-
sition Ost is conditioned on the state and state transition,
rather than on the word and word transition. This adds 360
(Danish and German) or 328 (Finnish and Spanish) compo-
nents. This requires more parameters than the word transi-
tion graph but has the ability to influence within word tran-
sitions in addition to word segmentation.

State Plus Next Word is the next model and is shown in
Figure 2(e). When there is no state transition or a within
word transition Ost is conditioned on the current state and
the state transition. When there is a transition out of a word
the model works in an analogous fashion to Word Plus Next
Word. For each word there is a model for transitioning from
the word to silence, from the word to any other word, from
the word to a short pause, and one model for a transition out
of silence and another for a transition out of short pause.
This adds 382 or 348 components.

Finally, Combined puts together the observations from
both the Word Plus Next Word model and the State Plus Next
Word model. The Gaussian parameters that were trained
separately for Word Plus Next Word and State Plus Next
Word are used directly in Combined with no additional train-
ing. This gives a total of 417 (Danish and German) or 380
(Finnish and Spanish) additional components. Only one set
of transition probabilities, p(Ptr|P), is needed to decode
this model, and they are taken from State Plus Next Word.

5. RESULTS

We evaluate the aforementioned models on the highly mis-
matched task of the four languages in Aurora 3.0. In each
of the models, the Gaussian observation scores need to be
scaled (in an analogous manner to the acoustic scale factor
used widely in LVCSR systems). This is because the two
feature streams use different numbers of components and
have different dimensionalities, and also because the scale
can be used to control the degree of influence the obser-
vation has in deciding the result. In these experiments the
scale of Os is kept constant at 1, and the scale of either Owt

or Ost was tested over a range of values. Both observa-
tions were scaled to 1 (i.e. no scaling) during training. The
Aurora 3.0 corpus does not provide development test sets,
so a scale that works across all four data sets is crucial to
indicate that the technique can be generalized rather than
requiring tuning for a particular task. Although a develop-
ment set would have been desirable, the recordings for the
four languages were created by independent working groups
under different noise conditions and the results are given for
the case where there is a mismatch of noise conditions and
microphones between training and testing. Figure 3 plots
the absolute improvement over the baseline versus the scale.
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Fig. 3. The models were decoded with an exponential scaling factor on the transition evidence feature stream. The scaling
exponent is on the x axis and the absolute improvement over baseline is the y axis. Note that on Figures (a), (b), and (e)
Spanish quickly falls below the bottom of the chart.

The single scale for each experiment was chosen based on
the sum of the accuracy score for each language. The word
recognition accuracies for each experiment at the chosen
point is given in Table 1.

The Word Transition model shows considerable improve-
ment over the baseline on Danish, French, and German but
was not able to perform above the baseline on Spanish. Word
Plus Next Word improves the curve on German and gives
the other three language better performance over the range
of scale values, but there is no point that improves the over-
all accuracy versus Word Transition. State Transition gives
much improvement on German and Spanish, and Finnish
performs over a larger range of scales. Danish does not
do as well on the State Transition experiments as compared
to the Word Transition experiments, but it is still above the
baseline. State Plus Next Word gives a small improvement
over State Transition for all four languages. It is interesting
that on the two state transition graphs German was able to
beat its baseline by 2.5 points, but only by using large scales
(near 2). Scales this large on the other languages perform
poorly. It is also notable that when considering only Danish,
Finnish, and German the Combined model performed better
than either Word Plus Next Word or State Plus Next Word
alone. Unfortunately, as in Word Plus Next Word, Spanish
does not do any better than the baseline.

One might wonder why Word Transition and Word Plus
Next Word failed to show improvement on Spanish. One
theory is that the final ”s” found in three of the Spanish dig-
its caused problems for these models. The ”s” sound found
elsewhere in the digits or in the noise might be prompting
spurious word transitions. As evidence for this, compared
to the baseline using a large scale value (0.8) on Word Tran-
sition gave 3.8 times as many insertions of the word ”seis”
and 2.1 times as many words mistranslated as ”seis”. The
word ”dos” had 2.3 times as many insertions and ”tres” had
1.9 times as many insertions. No other word had both an or-
der of magnitude increase and absolute increase of greater
than 5 for a type of mistake. This theory is difficult to prove
conclusively, though, and does not directly account for the
entire dip in performance at high scale values.

6. CONCLUSION

Acoustic information for predicting word and state transi-
tions was added to five graphical models at the part of the
model where it was thought to most likely benefit ASR per-
formance. The two models that conditioned on the State
Transition variable were able to improve on the baseline
for all four languages using a common scaling factor. The
two models that conditioned on the Word Transition and



Table 1. Word accuracy scores at the best scaling points. The total accuracy is an average of the four individual scores. The
first number in the # Parameters column is for Danish and German, the second number is for Finnish and Spanish.

Model Scale Danish Finnish German Spanish Total # Parameters
Reference 31.90 75.41 74.28 42.23 55.96
Baseline 80.53 91.10 88.81 90.71 87.79 2.27, 2.07 × 105

Word Transition 0.1 81.54 91.73 89.32 90.68 88.32 2.29, 2.08 × 105

Word Plus Next Word 0.3 81.50 91.73 89.22 90.65 88.28 2.29, 2.09 × 105

State Transition 0.4 80.92 91.77 90.10 91.10 88.47 2.46, 2.24 × 105

State Plus Next Word 0.75 81.15 91.87 90.19 91.22 88.61 2.47, 2.25 × 105

Combined 0.35 81.74 91.80 89.92 90.47 88.48 2.49, 2.27 × 105

the combined model showed improvements on three of the
languages but failed to improve on the fourth. In the three
cases where the combined system gave improvement it per-
formed better than the individual models that it was com-
posed of. Overall, we have shown that acoustic informa-
tion can be focused and integrated into a variety of specific
points in an ASR system, not just at the phone or state con-
ditioned Gaussian mixture, and that this general approach
can be quite beneficial. We plan in the future to combine the
MVSE features (Mean and Variance of Spectral Entropy)
defined in [3] with the approaches given here to hopefully
further improve performance. We also plan to employ other
forms of acoustic feature that could more beneficially indi-
cate transition and/or speaking rate.
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