EE562
ARTIFICIAL INTELLIGENCE FOR ENGINEERS

Lecture 4, 4/11/2005

University of Washington, Department of Electrical Engineering
Spring 2005
Instructor: Professor Jeff A. Bilmes
Today:
Informed search algorithms

Chapter 4
Material

• Chapter 4 Section 1 - 3
• But read the rest of Chapter 4!!
• Homework: Due Wed, April 20th.
 − Do: Problems 3.4, 3.7 3.10, 4.7, and 4.16.
 • for 4.16, do both 8-puzzle & 8-queens, and also implement the two simple heuristics h1 and h2 given in the book. Compare all of them.
 • Also for 4.16, devise your own novel heuristics for A* for the 8-puzzle & 8-queens problem.
Outline

• Best-first search
• Greedy best-first search
• A* search
• Heuristics
• Local search algorithms
• Hill-climbing search
• Simulated annealing search
• Local beam search
• Genetic algorithms
Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
 fringe ← INSERT(Make-Node(Initial-State[problem]), fringe)
loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[problem] applied to STATE(node) succeeds return node
 fringe ← INSERT-ALL(EXPAND(node, problem), fringe)

• A search strategy is defined by picking the order of node expansion
Best-first search

• Idea: use an evaluation function $f(n)$ for each node
 – estimate of "desirability"
 \rightarrow Expand most desirable unexpanded node

• Implementation:
 Order the nodes in fringe in decreasing order of desirability

• Special cases:
 – greedy best-first search
 – A^* search
Romania with step costs in km

Straight-line distance to Bucharest:
- Arad: 366
- Bucharest: 0
- Craiova: 160
- Dobroa: 242
- Eforie: 161
- Fagaras: 178
- Giurgiu: 77
- Hirsova: 151
- Iasi: 226
- Lugoj: 244
- Mehadia: 241
- Neamt: 234
- Oradea: 380
- Pitesti: 98
- Rimnicu Vilcea: 193
- Sibiu: 253
- Timisoara: 329
- Urziceni: 80
- Vaslui: 199
- Zerind: 374
Greedy best-first search

- Evaluation function $h(n)$ (heuristic)
 - $h(n) =$ estimate of cost from n to goal
 - *The better the estimate* the better the solution
- e.g., $h_{SLD}(n) =$ straight-line distance from n to Bucharest
- Greedy best-first search expands the node that *appears* to be closest to goal
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Greedy best-first search example
Properties of greedy best-first search

- **Complete?** No – can get stuck in loops, e.g., Iasi \rightarrow Neamt \rightarrow Iasi \rightarrow Neamt \rightarrow
- **Time?** $O(b^m)$, but a good heuristic can give dramatic improvement
- **Space?** $O(b^m)$ -- keeps all nodes in memory
- **Optimal?** No (i.e., it might not find the optimal solution)
A* search

• Idea: avoid expanding paths that are already expensive

• Evaluation function $f(n) = g(n) + h(n)$
 – $g(n)$ = cost so far to reach n (exact)
 – $h(n)$ = estimated cost from n to goal
 – $f(n)$ = estimated total cost of path through n to goal
A* search

• A* search uses an admissible heuristic, i.e., $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost from n to goal node.
 – we also require $h(n) \geq 0$, so that $h(G) = 0$ for any goal node G
 – $h_{SLD}(n)$ never overestimates the actual road distance due to triangle inequality.

• Theorem: A* search is optimal.
 – why? Intuition: it is good to be optimistic.
First, an A^* search example
A* search example

A* search example
A* search example
A* search example
A* search example
A* search example
Admissible heuristics

- A heuristic $h(n)$ is admissible if for every node n, $h(n) \leq h^*(n)$, where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic *never overestimates* the cost to reach the goal, i.e., it is optimistic.
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- **Theorem**: If $h(n)$ is admissible, A* using TREE-SEARCH is optimal.
Optimality of A* (proof)

• Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

\[
f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0
\]
\[
> g(G_1) \quad \text{since } G_2 \text{ is suboptimal}
\]
\[
\geq f(n) \quad \text{since } h \text{ is admissible}
\]

Since $f(G_2) > f(n)$, A* will never select G_2 for expansion.
Optimality of A^* (proof)

Lemma: A^* expands nodes in order of increasing f value.

Gradually adds "f-contours" of nodes (cf. breadth-first adds layers).

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$.

Contours can be any shape! The better the heuristic, the more the shape of the contour becomes an optimal path.
Properties of A*

• **Complete?** Yes, unless there are infinitely many nodes with $f \leq f(G)$

• **Time?** Exponential in [relative error in $h \times$ length of solution] (i.e., low error if relative error is logarithmic)

• **Space?** Keeps all nodes in memory

• **Optimal?** Yes, cannot expand f_{i+1} until f_i is finished.

A* expands all nodes with $f(n) < C^*$
A* expands some nodes with $f(n) = C^*$
A* expands no nodes with $f(n) > C^*$
Consistent heuristics

- A heuristic is **consistent** if for every node n, every successor n' of n generated by any action a,

 $$h(n) \leq c(n,a,n') + h(n')$$

- If h is consistent, we have

 $$f(n') = g(n') + h(n')$$
 $$= g(n) + c(n,a,n') + h(n')$$
 $$\geq g(n) + h(n)$$
 $$= f(n)$$

- i.e., $f(n)$ is non-decreasing along any path.
- **Theorem**: If $h(n)$ is consistent, A* using `GRAPH-SEARCH` is optimal
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) = $ number of misplaced tiles
- $h_2(n) = $ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

\[h_1(S) = ? \]
\[h_2(S) = ? \]
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance

(i.e., no. of squares from desired location of each tile)

- $h_1(S) = ? \, 8$
- $h_2(S) = ? \, 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$
Dominance

• If \(h_2(n) \geq h_1(n) \) for all \(n \) (both admissible), then \(h_2 \) dominates \(h_1 \) and \(h_2 \) is better for search.

• Typical search costs (average number of nodes expanded): Comparing Iterative Deepending Search and A* search (for solution depth \(d \)):
 - \(d=12 \):
 - IDS = 3,644,035 nodes
 - \(A^*(h_1) = 227 \) nodes
 - \(A^*(h_2) = 73 \) nodes
 - \(d=24 \):
 - IDS = too many nodes
 - \(A^*(h_1) = 39,135 \) nodes
 - \(A^*(h_2) = 1,641 \) nodes

• Moreover, given any admissible heuristic \(h_a \) and \(h_b \), then \(h = \max(h_a, h_b) \) is also admissible and dominates \(h_a \) and \(h_b \).
Relaxed problems

- A problem with fewer restrictions on the actions is called a *relaxed problem*.
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
- If the rules of the 8-puzzle are relaxed so that a tile can move *anywhere*, then $h_1(n)$ gives the shortest solution.
- If the rules are relaxed so that a tile can move to *any adjacent square*, then $h_2(n)$ gives the shortest solution.
- This can be a good way to generate heuristics.
- Also, computer programs can themselves help to propose good heuristics (or we can learn heuristics).
- Sometimes even if h is not admissible, we can do A* search and it works pretty well (Speech Recognition using “Stack Decoding”).
Local search algorithms

• In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution

• State space = set of "complete" configurations
• Find configuration satisfying constraints, e.g., n-queens

• In such cases, we can use local search algorithms
• keep a single "current" state, try to improve it
Example: n-queens

• Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

• Move queen to reduce conflicts:

• Almost always solves n-queens quickly!!
Hill-climbing search

• "Like climbing Everest in thick fog with amnesia"

```
function HILL-CLIMBING( problem ) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
                neighbor, a node

current ← MAKE-NODE( INITIAL-STATE[problem] )
loop do
    neighbor ← a highest-valued successor of current
    if VALUE[neighbor] ≤ VALUE[current] then return STATE[current]
    current ← neighbor
```
Hill-climbing search

- Problem: depending on initial state, can get stuck in local maxima

![Graph showing objective function with global and local maxima, shoulder, and "flat" local maximum.](image)
Hill-climbing search: 8-queens problem

- $h =$ number of pairs of queens that are attacking each other, either directly or indirectly
- $h =$ 17 for the above state
- Numbers in squares indicate the h value if queen is moved vertically to that square. This yields a greedy search strategy, keep moving vertical!
Hill-climbing search: 8-queens problem

- A local minimum with $h = 1$
Simulated annealing search

- Idea: escape local maxima by allowing some "bad" moves but \textbf{gradually decrease} their frequency

```latex
\begin{verbatim}
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
  local variables: current, a node
                  next, a node
                  T, a "temperature" controlling prob. of downward steps

  current ← MAKE-NODE(Initial-State[problem])
  for t ← 1 to ∞ do
    T ← schedule[t]
    if T = 0 then return current
    next ← a randomly selected successor of current
    ΔE ← VALUE[next] - VALUE[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability \( e^{\Delta E / T} \)
\end{verbatim}
```
Properties of simulated annealing search

- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1 — Metropolis1953.

- Widely used in VLSI layout, airline scheduling, and many other problems where the search space is not well understood.
Local beam search

• Keep track of k states rather than just one

• Start with k randomly generated states

• At each iteration, all the successors of all k states are generated

• If any one is a goal state, stop; else select the k best successors from the complete list and repeat.
Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation
Genetic algorithms

- Fitness function: number of non-attacking pairs of queens (min = 0, max = \(8 \times 7/2 = 28\))
- \(24/(24+23+20+11) = 31\%\)
- \(23/(24+23+20+11) = 29\%\) etc
Genetic algorithms