1. **[Oppenheim/Schafer Problem #2.47]**

 \[y[n] = x[n] + 2x[n-1] + x[n-2] = x[n] + (\delta[n] + 2\delta[n-1] + \delta[n-2]). \]

 Therefore, \(h[n] \), the impulse response is \(\delta[n] + 2\delta[n-1] + \delta[n-2] \). The system is stable because \(\sum_{k=-\infty}^{\infty} |h[k]| = 4 < \infty \).

 \[
 H(e^{j\omega}) = 1 + 2e^{-j\omega} + e^{-2j\omega} \\
 = 2e^{-j\omega}(0.5e^{j\omega} + 1 + 0.5e^{-j\omega}) \\
 = 2e^{-j\omega}(1 + \cos(\omega)).
 \]

 \[|H(e^{j\omega})| = 2(\cos(\omega) + 1), \text{ and } \arg H(e^{j\omega}) = -\omega. \]

2. **[Oppenheim/Schafer Problem #2.59]**

 \[R_x[n] = \sum_{k=-\infty}^{\infty} x^*[k]x[n+k] \]

 \[= \sum_{r=-\infty}^{\infty} x^*[\text{}\pm r\text{]}x[n-r] \]

 Substitute \(r = -k \)

 \[= x^*[-n]x[n] \]

 Therefore, \(g[n] = x^*[-n] \).

 For part (b), note that \(x^*[-n] \sim X^*(e^{j\omega}) \). Hence \(R_x(e^{j\omega}) = X(e^{j\omega})x^*(e^{j\omega}) = |X(e^{j\omega})|^2 \).

3. **[Oppenheim/Schafer Problem #2.60]**

 \[x_2[n] = \sum_{k=-\infty}^{\infty} x[k] = y_2[n] \]

 Therefore \(y_2[n] = \sum_{k=-\infty}^{\infty} y[k] \).

 For part (b), note that \(\delta[n] = \sum_{k=-\infty}^{\infty} x[n-k] \).

 Therefore by linearity, \(h[n] = \sum_{k=-\infty}^{\infty} y[k] \).

 One thing that you should note however is that the solution is not unique, even though it seems to be. The reason is that we could have potentially formed \(\delta[n] \) by other combinations of the \(x[n] \) as well. In general, \(h[n] \) satisfies the relation

 \[h[n-1] + h[n] = y[n] \]

 This leads to a unique solution if we make additional assumptions (such as causality, FIR-ness etc.). Otherwise, we get a solution that is unique up to the addition of a constant.

4. **[Oppenheim/Schafer Problem #2.62]**

 In this question, you were asked to use the definition of causality to show that \(h[n] \neq 0 \) for some \(n < 0 \) if and only if the system is causal. A system is causal if whenever \(\{x_1[n]\} \rightarrow \{y_1[n]\} \) and \(\{x_2[n]\} \rightarrow \{y_1[n]\} \) satisfy \(x_1[n] = x_2[n] \) for all \(n \leq n_0 \), then \(y_1[n] = y_2[n] \) for all \(n \leq n_0 \).

 For the forward direction, assume that \(h[n_0] \neq 0 \) for some \(n_0 < 0 \). Let \(x_1[n] = \delta[n+n_0] \).

 Then \[
 y_1[0] = \sum_{k=-\infty}^{\infty} x_1[k]h[0-k] = x[-n_0]h[0] = h[n_0] \neq 0
 \]

 Let \(x_2[n] = 0 \) for all \(n \in \mathbb{Z} \). Then by a previous homework problem, \(y_2[n] = 0 \) for all \(n \in \mathbb{Z} \). Therefore, we have \(x_1[n] = x_2[n] \) for all \(n < -n_0 - 1 \). Now, \(-n_0 - 1 \geq 0 \). However, \(h[n_0] = y_1[0] = y_2[0] = 0 \). Therefore, the system is not causal.

 For the converse, note that \(y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=-\infty}^{\infty} h[k]x[n-k] \). So, if \(x_1[n] = x_2[n] \) for all \(n \leq n_0 \), then \(x_1[n-k] = x_2[n-k] \) for all \(n \leq n_0, k \geq 0 \). Hence

 \[y_1[n] = \sum_{k=-\infty}^{\infty} h[k]x_1[n-k] = \sum_{k=-\infty}^{\infty} h[k]x_2[n-k] \]

 for \(n \leq n_0 \). Therefore the system is causal.

5. **[Oppenheim/Schafer Problem #2.66]**

 \[E(e^{j\omega}) = H_1(e^{j\omega})X(e^{j\omega}) \]

 \[F(e^{j\omega}) = E(e^{-j\omega}) = H_1(e^{-j\omega})X(e^{-j\omega}) \]

 \[G(e^{j\omega}) = H_1(e^{j\omega})F(e^{j\omega}) = H_1(e^{j\omega})H_1(e^{-j\omega})X(e^{j\omega}) \]

 \[Y(e^{j\omega}) = G(e^{j\omega}) = H_1(e^{j\omega})H_1(e^{-j\omega})e^{j\omega}X(e^{j\omega}) \]

 Therefore, \(H(e^{j\omega}) = H_1(e^{-j\omega})H(e^{j\omega}) \). Therefore \(h[n] = h_1[-n] \ast h_1[n] \).

6. **[Oppenheim/Schafer Problem #2.81]**

 Because \(s \) and \(e \) are uncorrelated, we have \(E\{s[n]e[m]\} = 0 \) for all \(n, m \). Hence \[
 E\{y[n]|y[n+m]\} = E\{s[n]e[n+s[n+m]]e[n+m]\} = E\{s[n]s[n+m]e[n+m]\}
 \]

 Using the fact that \(s, e \) are uncorrelated, we get

 \[= E\{s[n]s[n+m]\} E\{e[n]e[n+m]\} \]

 \[= \sigma_s^2 \sigma_e^2 \delta[m] \]

 because \(f[m] \delta[m] = f[0] \delta[m] \).