This lecture’s notes illustrate some uses of various \LaTeX macros. Take a look at this and imitate.

1.1 Some theorems and stuff

We now delve right into the proof.

Lemma 1.1. This is the first lemma of the lecture.

Proof. The proof is by induction on We also throw in a figure (which you might want to make larger).

![Figure 1.1: A Figure](image)

This is the end of the proof, which is marked with a little box.

1.1.1 A few items of note

Here is an itemized list:

- this is the first item;
- this is the second item.

Here is an enumerated list:

1. this is the first item;
2. this is the second item.

Here is an exercise:

Exercise: Find an efficient algorithm for triangulation.
Here is how to define things in the proper mathematical style. Let f_k be the AND – OR function, defined by

$$f_k(x_1, x_2, \ldots, x_{2^n}) = \begin{cases} x_1 & \text{if } k = 0; \\ \text{AND}(f_{k-1}(x_1, \ldots, x_{2^{n-1}}), f_{k-1}(x_{2^{n-1}+1}, \ldots, x_{2^n})) & \text{if } k \text{ is even; } \\ \text{OR}(f_{k-1}(x_1, \ldots, x_{2^{n-1}}), f_{k-1}(x_{2^{n-1}+1}, \ldots, x_{2^n})) & \text{otherwise.} \end{cases}$$

Here is another equation that uses one of the AMS commands, align

$$p(x_1, x_5) = \sum_{x_{2,3 \ldots}} p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2)p(x_5|x_1)p(x_6|x_2, x_5)$$
$$= p(x_1) \sum_{x_2} p(x_2|x_1) \sum_{x_3} p(x_3|x_1) \sum_{x_4} p(x_4|x_2) \sum_{x_5} p(x_5|x_1)p(x_6|x_2, x_5)$$
$$= p(x_1) \sum_{x_2} p(x_2|x_1) \sum_{x_3} p(x_3|x_1) \sum_{x_4} p(x_4|x_2) \sum_{x_5} p(x_5|x_1)\phi_{x_5}(x_2, x_5)$$

which assumes that $X_4 \perp \{X_1, X_3\}|X_2$.

Theorem 1.2. This is the first theorem.

Proof. This is the proof of the first theorem. We show how to write pseudo-code now.

Consider a comparison between x and y:

```plaintext
if x or y or both are in S then
  answer accordingly
else
  Make the element with the larger score (say x) win the comparison
  if $F(x) + F(y) < \frac{n}{2}$ then
    $F(x) \leftarrow F(x) + F(y)$
    $F(y) \leftarrow 0$
  else
    $S \leftarrow S \cup \{x\}$
    $r \leftarrow r + 1$
  endif
endif
```

This concludes the proof. □

1.2 Next topic

Here is some citations [JB00] and [L2000]

References