16.1 Message passing

Cliques \(v \) and \(w \) are neighbour cliques and \(s \) is the separator. Initially, assume that we don’t have local consistancy, i.e. we do not have:

\[
p(H, E = e) = \frac{\psi_v \psi_w}{\phi_s}
\]

If we let message passing from left to right, i.e. from clique \(v \) through \(s \) to \(w \),

\[
\phi_s^* = \sum_{v \setminus s} \psi_v, \text{ this is to update separator. } \psi_w^* = \frac{\partial}{\partial \psi_w} \psi_w \text{ to update } w. \text{ Now we have passed messages from } \psi_v \rightarrow \phi_s^* \rightarrow \psi_w^*.
\]

Next, let message pass backward:

\[
\phi_s^{**} = \sum_{w \setminus s} \psi_w^*
\]

\[
\psi_c^{**} = \frac{\phi_s^{**}}{\phi_s^*} \psi_c^*
\]
\[\psi_w^{**} = \psi_w^* \]

Now looking at the following, and we have consistency between \(V \) and \(W \) since:

\[
\sum_{v \neq w} \psi_v^{**} = \sum_{v \neq w} \frac{\phi_v^{**}}{\phi_w^*} \psi_v^* = \phi_w^{**} \sum_{v \neq w} \psi_v^* = \frac{\phi_w^{**}}{\phi_w^*} \phi_v^* = \phi_v^{**}
\]

As an example, look at the following graph:

In the graph above, the cliques are: \(AB; BC \).

\[\psi_{AB} = P(A, B), \psi_{BC} = P(C|B), \text{ and } \phi_B = 1 \]

Message passing in the forward direction:

\[
\psi_{(AB)^*} = \sum_{\{A, B\} \setminus B} P(A, B) = \sum_{A} P(A, B) = P(B)
\]
Lecture 16: May 27, 2000

\[\psi_{BC}^* = \frac{P(B)}{\phi_B} P(C|B) = \frac{P(B)}{1} P(C|B) = P(C, B) \]

Passing backward:

\[\phi_B^{**} = \sum_C \psi_{BC}^* = \sum_C P(C, B) = P(B) \]

\[\psi_{AB}^{**} = \frac{\phi_B^{**}}{\phi_B^*} \psi_{AB}^* = \frac{P(B)}{P(B)} p(A, B) = P(A, B) \]

⇒ Localconsistency

16.2 What happens when we introduce evidence?

As an example, \(A = 1 \).

Solution: Force the \(A = 0 \) portion of \(\psi_{AB} \) to be zero,

\[\phi_B^* = \sum_A \psi_{AB} = P(A=1, B) \]

\[\psi_{AB} \Rightarrow A=1 \psi_{AB} = \]

\[\psi_B^*[0.240.56] \]

\[\psi_{BC}^* = P(A=1, B) \frac{P(C|B)}{\phi_B^*} P(A=1, B) \] \[P(C|B) = P(A=1, B, C) \] \[\Rightarrow \psi_{AB}^* = P(A=1, B) \] \[\phi_B^* = P(A=1, B) \]

\[\psi_{BC}^* = P(A=1, B, C) \]

16.3 What happens when multiple cliques exists?

Ordering of message passing becomes important.

Looking at the following tree of cliques:
\(v \) and \(w \) are consistent, \(w \) and \(D_1 \) are consistent, but are \(v \) and \(D_1 \) consistent?

The key issue is: ordering of message passing.

16.4 Message Passing Protocol

Definition 16.1. A clique can send a message to a neighbouring cliques only when it has received messages from all its other neighbours.

Theorem 16.2. The Message Passing Protocol renders the cliques locally consistent to all pairs of connected cliques in the tree.

Proof.

To prove this, we consider two cases: Case 1: \(V \) already sent a message to \(W \) \(\Rightarrow \) \(V \) already received messages from all its neighbours.

Then \(V \) and \(W \) receive no more messages Therefore, consistent
Case 2: V had not yet sent a message to W, so W → V, and waits. (Message has to be back from V sometime in future.) Later, V will send $\phi_s^* \psi_w$?

\Rightarrow inconsistency

16.5 Hugin Algorithm

![Figure 16.6: A Figure](image)

First, we will use function $\text{update}(w, v)$ to update clique w with v, i.e. the following operations is done:

$$\phi_s^* = \sum_{v \in \phi_e} \psi_v$$

$$\psi_w^* = \frac{\phi_s^*}{\phi_e} \psi_w$$

The algorithm uses two routines:

- **CollectEvidence(node)**
 - for each child of node
 - update(node, CollectEvidence(child));
 - return node;

- **DistributeEvidence(node)**
 - for every child of node
 - update(child, code);
 - DistributeEvidence(child);
 - return

Algorithm (root)

CollectEvidence(root);
DistributeEvidence(root);

Theorem 16.3. CollectEvidence and DistributeEvidence obeys Message Passing Protocol.

Proof.
16.6 Marginals